Open Access
Issue
Mechanics & Industry
Volume 17, Number 4, 2016
Article Number 404
Number of page(s) 10
DOI https://doi.org/10.1051/meca/2015066
Published online 10 March 2016
  1. M P. Bendsøe, Topology optimization: theory, methods and applications, Springer, 2003 [Google Scholar]
  2. M.P. Bendsøe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Eng. 71 (1988) 197–224 [CrossRef] [MathSciNet] [Google Scholar]
  3. M.P. Bendsøe, Optimal shape design as a material distribution problem, Struct. Optim. 1 (1989) 193–202 [CrossRef] [Google Scholar]
  4. M. Zhou, G.I.N. Rozvany, The COC algorithm, Part II: topological, geometrical and generalized shape optimization, Comput. Methods Appl. Mech. Eng. 89 (1991) 309–336 [CrossRef] [Google Scholar]
  5. G. Allaire, F. Jouve, A.M. Toader, A level-set method for shape optimization, Comptes Rendus Mathematique 334 (2002) 1125–1130 [CrossRef] [MathSciNet] [Google Scholar]
  6. M.Y. Wang, X. Wang, D. Guo, A level set method for structural topology optimization, Comput. Methods Appl. Mech. Eng. 192 (2003) 227–246 [CrossRef] [MathSciNet] [Google Scholar]
  7. S.J. Osher, F. Santosa, Level set methods for optimization problems involving geometry and constraints: I. Frequencies of a two-density inhomogeneous drum, J. Comput. Phys. 171 (2001) 272–288 [CrossRef] [MathSciNet] [Google Scholar]
  8. Y.M. Xie, G.P. Steven, Basic Evolutionary Structural Optimization, Springer London, 1997 [Google Scholar]
  9. M. Stolpe, K. Svanberg, An alternative interpolation scheme for minimum compliance topology optimization, Struct. Multidiscipl. Optim. 22 (2001) 116–124 [CrossRef] [MathSciNet] [Google Scholar]
  10. M.P. Bendsøe, O. Sigmund, Material interpolation schemes in topology optimization, Arch. Appl. Mech. 69 (1999) 635–654 [CrossRef] [Google Scholar]
  11. O. Sigmund, Design of multiphysics actuators using topology optimization–Part II: Two-material structures, Comput. Methods Appl. Mech. Eng. 190 (2001) 6605−6627 [CrossRef] [Google Scholar]
  12. L. Yin, Ananthasuresh G K. Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme, Struct. Multidiscip. Optim. 23 (2001) 49–62 [CrossRef] [Google Scholar]
  13. S. Chen, S. Gonella, W. Chen, et al., A level set approach for optimal design of smart energy harvesters, Comput. Methods Appl. Mech. Eng. 199 (2010) 2532–2543 [CrossRef] [Google Scholar]
  14. Z. Luo, L. Tong, J. Luo, et al., Design of piezoelectric actuators using a multiphase level set method of piecewise constants, J. Comput. Phys. 228 (2009) 2643–2659 [CrossRef] [Google Scholar]
  15. Z. Luo, W. Gao, C. Song, Design of multi-phase piezoelectric actuators, J. Intell. Mater. Syst. Struct. 21 (2010) 1851–1865 [CrossRef] [Google Scholar]
  16. Saxena A. On multiple-material optimal compliant topologies: discrete variable parameterization using genetic algorithm, ASME, 2002 [Google Scholar]
  17. Y.L. Mei, X.M. Wang, A level set method for structural topology optimization with multi-constraints and multi-materials, Acta Mechanica Sinica 20 (2004) 507–518 [CrossRef] [MathSciNet] [Google Scholar]
  18. M.Y. Wang, X. Wang, “Color” level sets: a multi-phase method for structural topology optimization with multiple materials, Comput. Methods Appl. Mech. Eng. 193 (2004) 469–496 [CrossRef] [Google Scholar]
  19. G. Allaire, C. Dapogny, G. Delgado, et al., Multi-phase structural optimization via a level set method, Control Optim. Calc. Var. 20 (2014) 576–611 [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  20. S.W. Zhou, M.Y. Wang, Multimaterial structural topology optimization with a generalized Cahn–Hilliard model of multiphase transition, Struct. Multidiscipl. Optim. 33 (2007) 89–111 [CrossRef] [Google Scholar]
  21. J. Stegmann, E. Lund, Discrete material optimization of general composite shell structures, Int. J. Numer. Methods Eng. 62 (2005) 2009–2027 [CrossRef] [Google Scholar]
  22. S.Y. Han, S.K. Lee, Development of a material mixing method based on evolutionary structural optimization, JSME Int. J. Ser. A 48 (2005) 132–135 [CrossRef] [Google Scholar]
  23. A. Ramani, A pseudo-sensitivity based discrete-variable approach to structural topology optimization with multiple materials, Struct. Multidiscipl. Optim. 41 (2010) 913−934 [CrossRef] [Google Scholar]
  24. M.Y. Wang, S.W. Zhou, Synthesis of shape and topology of multi material structures with a phase-field method, J. Comput.-Aid. Mater. Design 11 (2004) 117–138 [CrossRef] [Google Scholar]
  25. K. Svanberg, The method of moving asymptotes – a new method for structural optimization, Int. J. Numer. Methods Eng. 24 (1987) 359–373 [CrossRef] [Google Scholar]
  26. O. Sigmund, A 99 line topology optimization code written in matlab, Struct. Multidiscipl. Optim. 21 (2001) 120–127 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.