Open Access
Issue
Mechanics & Industry
Volume 17, Number 4, 2016
Article Number 403
Number of page(s) 9
DOI https://doi.org/10.1051/meca/2015102
Published online 10 March 2016
  1. F. Cenac, Étude de l’usinage non débouchant par jet d’eau abrasif des composites, Ph.D thesis, University Paul Sabatier, 2011 [Google Scholar]
  2. L. Crouzeix, F. Collombet, Y. Grunevald, Step repaired coupons involving Abrasive Water Jet machining, in: JNC 17, Poitiers, 2011, pp. 1–10 [Google Scholar]
  3. G. Fowler, Abrasive Water-jet - Controlled Depth Milling Titanium Alloys, Ph.D. thesis, University of Nottingham, 2003 [Google Scholar]
  4. D.S. Srinivasu, D. Axinte, An analytical model for top width of jet footprint in abrasive waterjet milling: a case study on SiC ceramics, in: Proc. Inst. Mech. Eng., 2011, pp. 319–335 [Google Scholar]
  5. D.S. Srinivasu, D.A. Axinte, P.H. Shipway, J. Folkes, Influence of kinematic operating parameters on kerf geometry in abrasive waterjet machining of silicon carbide ceramics, Int. J. Mach. Tools Manuf. 49 (2009) 1077–1088 [CrossRef] [Google Scholar]
  6. N. Zuckerman, N. Lior, Jet Impingement Heat Transfer: Physics, Correlations , and Numerical Modeling, Adv. Heat Transf. 39 (2006) 565–631 [CrossRef] [Google Scholar]
  7. M.C. Kong, D. Axinte, W. Voice, Aspects of material removal mechanism in plain waterjet milling on gamma titanium aluminide, J. Mater. Process. Technol. 210 (2010) 573–584 [Google Scholar]
  8. M.C. Kong, D. Axinte, W. Voice, Challenges in using waterjet machining of NiTi shape memory alloys: An analysis of controlled-depth milling, J. Mater. Process. Technol. 211 (2011) 959–971 [Google Scholar]
  9. J. Wang, Abrasive Waterjet Machining of Polymer Matrix Composites - Cutting Performance, Erosive Process and Predictive Models, Int. J. Adv. Manuf. Technol. 15 (1999) 757–768 [Google Scholar]
  10. I. Finnie, Erosion of surface by solid particles, Shell Dev. Co. 1960 [Google Scholar]
  11. H.T. Zhu, C.Z. Huang, J. Wang, Q.L. Li, C.L. Che, Experimental study on abrasive waterjet polishing for hard–brittle materials, Int. J. Mach. Tools Manuf. 49 (2009) 569–578 [CrossRef] [Google Scholar]
  12. K. Maniadaki, T. Kestis, N. Bilalis, A. Antoniadis, A finite element-based model for pure waterjet process simulation, Int. J. Adv. Manuf. Technol. 31 (2006) 933–940 [CrossRef] [Google Scholar]
  13. S. Anwar, D.A. Axinte, A.A. Becker, Finite element modelling of overlapping abrasive waterjet milled footprints, Wear (2013) [Google Scholar]
  14. A. Alberdi, A. Rivero, L.N. López de Lacalle, I. Etxeberria, A. Suárez, Effect of process parameter on the kerf geometry in abrasive water jet milling, Int. J. Adv. Manuf. Technol. 51 (2010) 467–480 [CrossRef] [Google Scholar]
  15. A. Carrascal, A. Alberdi, F. Fatronik-Tecnalia, P. Mikeletegi, P. Tecnológico, Evolutionary Industrial Physical Model Generation, 2010, pp. 327–334 [Google Scholar]
  16. A. Alberdi, A. Rivero, L.N. López de Lacalle, Experimental Study of the Slot Overlapping and Tool Path Variation Effect in Abrasive Waterjet Milling, J. Manuf. Sci. Eng. 133 (2011) 034502 [CrossRef] [Google Scholar]
  17. A. Cornier, Developpement d’un modèle d’enlèvement de matière par granulation utilisant le jet d’eau haute pression: application au démantelement de pneumatiques, Ph.D. Thesis, École Nationale Superieure d’Arts et Metiers, 2004 [Google Scholar]
  18. S. Ferrendier, Influence de l’Evolution Granulométrique des Abrasifs sur l’Enlèvement de Matière lors de la découpe par JEA, Ph.D. thesis, École Nationale Superieure d’Arts et Metiers, 2001 [Google Scholar]
  19. M. Zaki, Modélisation et simulation numérique du procédé de perçage non débouchant par jet d’eau abrasif, Ph.D. thesis, École Nationale Superieure d’Arts et Metiers, 2009 [Google Scholar]
  20. M.K. Kulekci, Processes and apparatus developments in industrial waterjet applications, Int. J. Mach. Tools Manuf. 42 1297–1306. 42 (2002) 1297–1306 [CrossRef] [Google Scholar]
  21. D.A. Axinte, D.S. Srinivasu, J. Billingham, M. Cooper, Geometrical modelling of abrasive waterjet footprints: A study for 90° jet impact angle, CIRP Ann. - Manuf. Technol. 59 (2010) 341–346 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.