Open Access
Mechanics & Industry
Volume 17, Number 5, 2016
Article Number 512
Number of page(s) 14
Published online 07 July 2016
  1. E. Reissner, The effect of transverse shear deformation on the bending of elastic plates, J. Appl. Mech. Trans. ASME 12 (1945) 69–77 [Google Scholar]
  2. R.D. Mindlin, Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates, J. Appl. Mech. Trans. ASME 18 (1951) 31–8 [Google Scholar]
  3. Y. Stavski, On the theory of symmetrically heterogeneous plates having the same thickness variation of the elastic moduli, Topics in Applied Mechanics. American Elsevier, New York, 1965, p. 105 [Google Scholar]
  4. P.C. Yang, C.H. Norris, Y. Stavsky, Elastic wave propagation in heterogeneous plates, Int. J. Solids Struct. 2 (1966) 665–684 [CrossRef] [Google Scholar]
  5. S. Srinivas, A.K. Rao, Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates, Int. J. Solids Struct. 6 (1970) 1463–1481 [CrossRef] [Google Scholar]
  6. J.M. Whitney, C.T. Sun, A higher-order theory for extensional motion of laminated composites, J. Sound Vib. 30 (1973) 85–97 [CrossRef] [Google Scholar]
  7. C.W. Bert, Structure design and analysis: Part I, in: C. C. Chamis (Ed.), Analysis of Plates. Academic Press, New York (Chap. 4), 1974 [Google Scholar]
  8. L. Librescu, On the theory of anisotropic elastic shells and plates, Int. J. Solids Struct. 3 (1967) 53–68 [CrossRef] [Google Scholar]
  9. M. Levinson, An accurate, simple theory of the statics and dynamics of elastic plates, Mech. Res. Commun. 7 (1980) 343–350 [Google Scholar]
  10. A. Bhimaraddi, L.K. Stevens, A higher order theory for free vibration of orthotropic, homogeneous and laminated rectangular plates, J. Appl. Mech. Trans. ASME 51 (1984) 195–198 [CrossRef] [Google Scholar]
  11. J.N. Reddy, A simple higher-order theory for laminated composite plates, J. Appl. Mech. Trans. ASME 51 (1984) 745–752 [Google Scholar]
  12. J.G. Ren, A new theory of laminated plate, Compos. Sci. Technol. 26 (1986) 225–239 [CrossRef] [Google Scholar]
  13. T. Kant, B.N. Pandya, A simple finite element formulation of a higher-order theory for unsymmetrically laminated composite plates, Compos. Struct. 9 (1988) 215–264 [CrossRef] [Google Scholar]
  14. P.R. Mohan, B.P. Naganarayana, G. Prathap, Consistent and variationally correct finite elements for higher-order laminated plate theory, Compos. Struct. 29 (1994) 445–456 [CrossRef] [Google Scholar]
  15. A.K. Noor, W.S. Burton, Assessment of shear deformation theories for multilayered composite plates, Appl. Mech. Rev. 42 (1989) 1–13 [CrossRef] [Google Scholar]
  16. J.N. Reddy, A review of refined theories of laminated composite plates, Shock. Vib. Dig. 22 (1990) 3–17 [Google Scholar]
  17. J.N. Reddy, An evaluation of equivalent-single-layer and layerwise theories of composite laminates, Compos. Struct. 25 (1993) 21–35 [CrossRef] [Google Scholar]
  18. M. Mallikarjuna, T. Kant, A critical review and some results of recently developed refined theories of fiber-reinforced laminated composites and sandwiches, Compos. Struct. 23 (1993) 293–312 [CrossRef] [Google Scholar]
  19. L. Dahsin, L. Xiaoyu, An overall view of laminate theories based on displacement hypothesis, J. Compos. Mater. 30 (1996) 1539–1561 [CrossRef] [Google Scholar]
  20. R.P. Shimpi, Refined plate theory and its variants, AIAA J. 40 (2002) 137–146 [CrossRef] [Google Scholar]
  21. R.P. Shimpi, H.G. Patel, A two variable refined plate theory for orthotropic plate analysis, Int. J. Solids Struct. 43 (2006) 6783–6799 [CrossRef] [Google Scholar]
  22. R.P. Shimpi, H.G. Patel, Free vibrations of plate using two variable refined plate theory, J. Sound Vib. 296 (2006) 979–999 [CrossRef] [Google Scholar]
  23. A.K. Noor, Stability of multilayered composite plate, Fibre Sci. Technol. 8 (1975) 81–89 [Google Scholar]
  24. J.M. Whitney, N.J. Pagano, Shear deformation in heterogeneous anisotropic plates, J. Appl. Mech. Trans. ASME 37 (1970) 1031–1036 [CrossRef] [Google Scholar]
  25. J.G. Ren, Bending, vibration and buckling of laminated plates, in: N.P. Cheremisinoff (Ed.), Handbook of ceramics and composites, Marcel Dekker, New York, 1990, Vol. 1, pp. 413–50 [Google Scholar]
  26. K. Noor, Free vibrations of multilayered composite plates, AIAA J. 11 (1973) 1038–1039 [CrossRef] [Google Scholar]
  27. J.M. Whitney, N.J. Pagano, Shear deformation in heterogeneous anisotropic plates, J. Appl. Mech. 37 (1970) 1031–1036 [CrossRef] [Google Scholar]
  28. M. Karama, K.S. Afaq, S. Mistou, Mechanical behavior of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity, Int. J. Solids Struct. 40 (2003) 1525–1546 [Google Scholar]
  29. K. Swaminathan, S. Patil, Analytical solutions using a higher order refined computational model with 12 degrees of freedom for the free vibration analysis of antisymmetric angle-ply plates, Compos. Struct. 82 (2008) 209–216 [CrossRef] [Google Scholar]
  30. Huu-Tai Thai, Dong-Ho Choi, A simple first-order shear deformation theory for laminated composite plates, Compos. Struct. 106 (2013) 754–763 [CrossRef] [Google Scholar]
  31. Song Xiang, Guang-chao Li, Wei Zhang, Ming-sui Yang A meshless local radial point collocation method for free vibration analysis of laminated composite plates, Compos. Struct. 93 (2011) 280–286 [CrossRef] [Google Scholar]
  32. K. Nedri, N. El Meiche, A. Tounsi, Free vibration analysis of laminated composite plates resting on elastic foundations by using a refined hyperbolic shear deformation theory, J. Mech. Comp. Mat. 49 (2013) 943–958 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.