Open Access
Issue
Mechanics & Industry
Volume 17, Number 5, 2016
Article Number 503
Number of page(s) 11
DOI https://doi.org/10.1051/meca/2015079
Published online 10 June 2016
  1. J. Mackerle, Finite element analyses in wood research: A bibliography, Wood Sci. Technol. 39 (2005) 579–600 [CrossRef] [Google Scholar]
  2. C.A. Eckelman, Performance testing of side chairs, Holz als Roh- und Werkstoff 57 (1999) 227–234 [CrossRef] [Google Scholar]
  3. C.A. Eckelman, A technique for structural modeling of front rails for sofas, Holz als Roh- und Werkstoff 60 (2002) 60–65 [CrossRef] [Google Scholar]
  4. C.A. Eckelman, E. Haviarova, Performance test of school chairs constructed with round mortise and tenon joints, Forest Prod. J. 56 (2006) 51–57 [Google Scholar]
  5. A. Kasal, Determination of the strength of various sofa frames with finite element analysis, G. U. J. Sci. 19 (2006) 191–203 [Google Scholar]
  6. A. Kasal, Y.Z. Erdil, C.A. Eckelman, The shear force and bending moment capacities of joints constructed with glued corner blocks, Forest Prod. J. 56 (2006) 74–79 [Google Scholar]
  7. A. Kasal, Y.Z. Erdil, J. Zhang, H. Efe, E. Avci, Estimation equations for moment resistances of L-type screw corner joints in case goods furniture, Forest Prod. J. 58 (2008) 21–27 [Google Scholar]
  8. T. Nicholls, R. Crisan, Study of the stress-strain state in corner joints and box-type furniture using FEA, Holz als Roh- und Werkstoff, 60 (2002) 66–71 [CrossRef] [Google Scholar]
  9. S. Mishra, M. Sain, Strength analysis of chair base from wood plastic composites by finite element method, Mater. Res. Innov. 11 (2007) 137–143 [CrossRef] [Google Scholar]
  10. C. Paoliello, E. Vladimiro, M. Carrasco, Chair load analysis during daily sitting activities, Forest Prod. J. 58 (2008) 28–31 [Google Scholar]
  11. M.H. Çolakoglu, A.C. Apay, Finite element analysis of wooden chair strength in free drop, Int. J. Phys. Sci. 7 (2012) 1105–1114 [Google Scholar]
  12. J.E. Winandy, Encyclopedia of Agricultural Science, Academic Press, Orlando, FL, 1994, Vol. 4, pp. 549–561 [Google Scholar]
  13. R. Gupta, K.G. Gebremedhin, M.D. Grigoriu, Characterizing the strength of wood truss joints, Trans. ASAE 35 (1992) 1285–1290 [CrossRef] [Google Scholar]
  14. L. Ozola, Statistical Estimates of Strength and Stiffness Properties of Timber. In: Proceedings of the International Conference on Probabilistic Models in Timber Engineering. Tests, Models, Applications: COST Action E24, Arcachon, France, September 8-9, 2005 [Google Scholar]
  15. JCSS, Probabilistic model code. Part III - Resistance models, Properties of timber, Joint committee on Structural Safety, 2006, Chap. 3.5, 16 p. [Google Scholar]
  16. K.B. Dahl, Mechanical properties of clear wood from Norway spruce. Doctoral theses. NTNU, Department of Structural Engineering, Trondheim, Norway, 2009 [Google Scholar]
  17. L. Chevalier, Y. Marco, Identification of a strain induced crystallisation model for PET under uni and bi-axial loading: influence of temperature dispersion, Mech. Mater. 39 (2007) 596–609 [CrossRef] [Google Scholar]
  18. L. Chevalier, S. Cloupet, C. Soize, Probabilistic model for random uncertainties in steady state rolling contact, Wear 258 (2005) 1543–1554 [CrossRef] [Google Scholar]
  19. J. Guilleminot, C. Soize, Generalized stochastic approach for constitutive equation in linear elasticity: A Random Matrix Model, Int. J. Numer. Meth. Eng. 90 (2011) 613–635 [CrossRef] [Google Scholar]
  20. C. Soize, Maximum entropy approach for modelling random uncertainties in transient elastodynamics, J. Acoust. Soc. Am. 109 (2001) 1979–1996 [CrossRef] [PubMed] [Google Scholar]
  21. L. Chevalier, H. Makhlouf, B. Jacquet-Faucillon, Caractérisation de la rigidité des assemblages d’éléments de meuble par la simulation numérique (characterization of the stiffness of connections between wood component using FEA), Technologie 187 (2013) 38–51 [Google Scholar]
  22. Y. Berthaud, J. Scholz, J. T hesing, Optical and acoustic methods for measuring mechanical properties. fr. In: Proceedings of Colloque national MECAMAT, Mécanismes et mécanique des grandes déformations, Aussois, France, 1996, pp. 77–80 [Google Scholar]
  23. F. Collins, Y. Berthaud, F. Hild, Visualization oft strain distribution and cracks initiation in a composite material by image analysis. Fr. In: Proceedings of Photomécanique 98, 1998, GAMAC, Marne-la-Vallée, France, 1998, pp. 241–248 [Google Scholar]
  24. S. Mguil, F. Morestin, M. Brunet, Measuring deformation with direct digital image correlation.fr. In : Proceedings of Photomécanique 98, 1998, GAMAC, Marne-la-Vallée, France, 1998, pp. 361–368 [Google Scholar]
  25. M.A. Sutton, W.J. Wolters, W.H. Peters, W. F. Ranson, S.R. McNeill, Determination of displacements using an improved digital correlation Method, Image Vision Comput. 1 (1983) 133–139 [CrossRef] [Google Scholar]
  26. L. Chevalier, Y. Marco, Tools for Multiaxial Validation of Behavior laws Chosen for Modeling Hyper Elasticity of Rubber-Like Materials, Polym. Eng. Sci. 42 (2002) 280–298 [CrossRef] [Google Scholar]
  27. L. Chevalier, S. Calloch, F. Hild, Y. Marco, Digital correlation used to analyse the multiaxial behavior of rubber-like materials, Eur. J. Mech. A/Solids 20 (2001) 169–187 [CrossRef] [Google Scholar]
  28. L. Chevalier, Y.M. Luo, E. Monteiro, B. Plantamura, Strain Field Measurement on 3D surfaces: Application to Petaloid Base of PET Bottles under Pressure, Int. Pol. Proc. 25 (2010) 93–108 [CrossRef] [Google Scholar]
  29. H. Yoshihara, K. Yoshitaka, K. Nagaoka, M. Masamitsu, Measurement of the shear modulus of wood by static bending tests, J. Wood Sci. 44 (1998) 15–20 [CrossRef] [Google Scholar]
  30. K. Murata, K. Tsubasa, Determination of Young’s modulus and shear modulus by means of deflection curves for wood beams obtained in static bending tests, Holzforschung 61 (2007) 589–594 [CrossRef] [Google Scholar]
  31. H. Yoshihara, S. Tsunematsu, Feasibility of estimation methods for measuring Young’s modulus of wood by three-point bending test, Mater. Struct. 39 (2006) 29–36 [CrossRef] [Google Scholar]
  32. D. Choi, J.L. Thorpe, R.B. Hanna, Image analysis to measure strain in wood and paper, Wood Sci. Technol. 25 (1991) 251–262 [CrossRef] [Google Scholar]
  33. K.B. Dahl, K.A. Malo, Linear shear properties of spruce softwood, Wood Sci. Technol. 43 (2009) 499–525 [CrossRef] [Google Scholar]
  34. J.S. Machado, J. L. Louzada, A.J. A. Santos, L. Nunes, O. Anjos, J. Rodrigues, R.M.S. Simões, H. Pereira, Variation of wood density and mechanical properties of blackwood (Acacia melanoxylon R. Br.). Mater. Design 56 (2014) 975–980 [Google Scholar]
  35. R. Steiger, M. Arnold, Strength grading of Norway spruce structural timber: revisiting property relationships used in EN 338 classification system, Wood Sci. Technol. 43 (2009) 259–278 [CrossRef] [Google Scholar]
  36. EN 747-2, Furniture - Bunk beds and high beds for domestic use – Part 2: Test methods, 2012 [Google Scholar]
  37. M.H. Kalos, P.A. Whitlock, Monte-Carlo Methods Volume 1: Basics. John Wiley and Sons, New York, 1986 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.