Open Access
Issue
Mechanics & Industry
Volume 17, Number 5, 2016
Article Number 502
Number of page(s) 15
DOI https://doi.org/10.1051/meca/2015099
Published online 10 June 2016
  1. C. Zamfirescu, I. Dincer, Thermodynamic analysis of a novel ammonia-water trilateral Rankine cycle, Thermochim. Acta 447 (2008) 7–15 [Google Scholar]
  2. A. Kalina, Combined cycle system with novel bottoming cycle, J. Eng. Gas Turbines Power 106 (1984) 737–742 [CrossRef] [Google Scholar]
  3. M. Jonsson, J. Yan, Ammonia-water bottoming cycles: a comparison between gas engines and gas diesel engines as prime movers, Energy 26 (2001) 31–44 [CrossRef] [Google Scholar]
  4. T. Srinivas, A. Gupta, B. Reddy, Performance Simulation of Combined Cycle with Bottoming cycle, Cogeneration and Distributed generation Journal 26 (2008) 6–21 [CrossRef] [Google Scholar]
  5. S. Ogriseck, Integration of Kalina cycle in a combined heat and power plant, a case study, Appl. Thermal Eng. 29 (2009) 2843–2848 [Google Scholar]
  6. W.R. Wagar, C. Zamfirescu, I. Dincer, Thermodynamic performance assessment of an ammonia-water Rankine cycle for power and heat production, Energy Convers. Manag. 51 (2010) 2501–2509 [CrossRef] [Google Scholar]
  7. X. Shi, D. Che, A combined power cycle utilizing low-temperature waste heat and LNG cold energy, Energy Convers. Manag. 50 (2009) 567–575 [CrossRef] [Google Scholar]
  8. F. Sun, Y. Ikegami, B. Jia, A study on Kalina solar system with auxiliary superheater, Renew. Energy 41 (2012) 210–219 [CrossRef] [Google Scholar]
  9. P.A. Lolos, E.D. Rogdakis, A Kalina Power cycle driven by renewable energy sources, Energy 34 (2009) 457–464 [CrossRef] [Google Scholar]
  10. C. Dejfors, E. Thorin, G. Svedberg, Ammonia-water power cycle for direct fired cogeneration applications, Energy Convers. Manag. 39 (1998) 1675–1681 [CrossRef] [Google Scholar]
  11. M. Rosen, I. Dincer, M. Kanoglu, Role of exergy in increasing efficiency and sustainability and reducing environmental impact, Energy Policy 36 (2008) 128–137 [CrossRef] [Google Scholar]
  12. R. Padilla, G. Demirkaya, D. Goswami, E. Stefanakos, R. Rahman, Analysis of power and cooling cogeneration using ammonia-water mixture, Energy 35 (2010) 4649–4657 [CrossRef] [Google Scholar]
  13. P. Ahmadi, I. Dincer, M. Rosen, Exergo-environmental analysis of an integrated organic Rankine cycle for trigeneration, Energy Convers. Manag. 64 (2012) 447–453 [CrossRef] [Google Scholar]
  14. M. Liu, N. Zhang, Proposal and analysis of a novel ammonia-water cycle for power and refrigeration cogeneration, Energy 32 (2007) 961–970 [CrossRef] [Google Scholar]
  15. A. Vidal, R. Best, R. Rivero, J. Cervantes, Analysis of a combined power and refrigeration cycle by the exergy method, Energy 31 (2006) 3401–3414 [CrossRef] [Google Scholar]
  16. K. Takeshita, Y. Amano, T. Hashizume, Experimental study of advanced cogeneration with ammonia-water mixture cycles at bottoming, Energy 30 (2005) 247–260 [CrossRef] [Google Scholar]
  17. T. Miyazaki, A. Akisawa, T. Kashiwagi, Operating conditions of a three-stage combined power cycle using cold energy for maximizing exergetic efficiency, Trans. Japan Soc. Refriger. Air Cond. Eng. 18 (2011) 173–183 [Google Scholar]
  18. I.O. Marrero, A.M. Lefsaker, A. Razani, K.J. Kim, Second law analysis and optimization of a combined triple power cycle, Energy Convers. Manag. 43 (2002) 557–573 [Google Scholar]
  19. A. Momeni, H. Shokouhmand, Thermodynamic modeling of three-stage combined cycle power systems utilizing ammonia-water mixture as working fluid in bottoming cycle, Int. J. Exergy 14 (2014) 320–340 [CrossRef] [Google Scholar]
  20. P. Ahmadi, I. Dincer, M. Rosen Energy and exergy analyses of hydrogen production via solar-boosted ocean thermal energy conversion and PEM electrolysis, Int. J. Hydrogen Energy 38 (2013) 1795–1805 [CrossRef] [Google Scholar]
  21. P. Ahmadi, I. Dincer, M. Rosen, Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants, Energy 36 (2011) 5886–5898 [CrossRef] [Google Scholar]
  22. V. Zare, S.M.S. Mahmoudi, M. Yari, M. Amidpour, Thermoeconomic analysis and optimization of an ammonia-water power/cooling cogeneration cycle, Energy 47 (2012) 271–283 [CrossRef] [Google Scholar]
  23. P. Ahmadi, I. Dincer, M. Rosen, Thermodynamic modeling and multi-objective evolutionary-based optimization of a new multigeneration energy system, Energy Convers. Manag. 76 (2011) 282–300 [Google Scholar]
  24. C. Coskun, Z. Oktay, I. Dincer, Investigation of some renewable energy and exergy parameters for two Geothermal District Heating Systems, Int. J. Exergy 8 (2011) 1–15 [CrossRef] [Google Scholar]
  25. O. Arslan, Exergoeconomic evaluation of electricity generation by the medium temperature geothermal resource, using a Kalina cycle: Simav case study, Int. J. Thermal Sci. 49 (2010) 1886–1873 [CrossRef] [Google Scholar]
  26. W. Fu, J. Zhu, W. Zhang, Z. Lu, Performance evaluation of Kalina cycle subsystem on geothermal generation on the oilfield, Appl. Thermal Eng. 54 (2013) 497–506 [CrossRef] [Google Scholar]
  27. O. Singh, S.C. Kaushik, Thermoeconomic evaluation and optimization of a Brayton-Rankine-Kalina combined triple power cycle, Energy Convers. Manag. 71 (2013) 32–42 [CrossRef] [Google Scholar]
  28. P. Ahmadi, M.A. Rosen, I. Dincer, Greenhouse gas emission and exergo-environmental analyses of a trigeneration energy system, Int. J. Green House Gas Control5 (2011) 1540–9 [CrossRef] [Google Scholar]
  29. P. Ahmadi, I. Dincer, M. Rosen. Development and assessment of an integrated biomass-based multi-generation energy system, Energy 56 (2013) 155–166 [CrossRef] [Google Scholar]
  30. M. Ghazi, P. Ahmadi, A.F. Sotoodeh, A. Taherkhani. Modeling and thermo-economic optimization of heat recovery heat exchangers using a multimodal genetic algorithm, Energy Convers. Manag. 58 (2012) 149–156 [Google Scholar]
  31. M.S. Peters, K.D. Timmerhaus, Plant Design And Economics For Chemical Engineers, 4th edition, McGraw-Hill, New York, 1991 [Google Scholar]
  32. P. Roosen, S. Uhlenbruck, K. Lucas, Pareto optimization of a combined cycle power system as a decision support tool for trading off investment vs. operating costs, Int. J. Thermal Sci. 42 (2003) 553–560 [CrossRef] [Google Scholar]
  33. J.P. Holman, Heat Transfer, 5th edition, McGraw-Hill, New York, 2002 [Google Scholar]
  34. A. Bejan, G. Tsatsaronis, M. Moran, Thermal design and optimization, fifth ed., John Wiley & Sons, New York, 1999 [Google Scholar]
  35. M. Benali, A. Hammache, F. Aube, J. Dipama, R. Cantave, Dynamic multi objective optimization of large-scale industrial production systems: an emerging strategy, Int. J. Energy Res. 31 (2007) 1202–1225 [CrossRef] [Google Scholar]
  36. A. Rovira, M. Valdes, J. Casanova, A new methodology to solve non-linear equation systems using genetic algorithms. Application to combined cycle gas turbine simulation, Int. J. Numer. Methods Eng. 63 (2005) 1424–1435 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.