Open Access
Mechanics & Industry
Volume 17, Number 5, 2016
Article Number 506
Number of page(s) 10
Published online 16 June 2016
  1. D.J. Shendage, S.B. Kedare, S.L. Bapat, An analysis of a beta type Stirling engine with rhombic drive mechanism, Renew. Energy 36 (2011) 289–297 [CrossRef] [Google Scholar]
  2. D.G. Thombare, S.K. Verma, Technological development in the Stirling cycle engines, Renew Sustain. Energy Rev. 12 (2008) 1–38 [Google Scholar]
  3. H. Karabulut, H.S. Yucesu, C. Cinar, Nodal analysis of a Stirling engine with concentric piston and displacer, Renew. Energy 31 (2006) 2188–2197 [CrossRef] [Google Scholar]
  4. H. Karabulut, H.S. Yucesu, C. Cinar, F. Aksoy, An experimental study on the development of a b-type Stirling engine for low and moderate temperature heat sources, Appl. Energy 86 (2009) 68–73 [CrossRef] [Google Scholar]
  5. E. Prodesser, Electricity production in rural villages with biomass Stirling engines, Renew. Energy 16 (1999) 1049–1052 [Google Scholar]
  6. A. Sripakagorn, C. Srikam, Design and performance of a moderate temperature difference Stirling engine, Renew. Energy 36 (2011) 1728–1733 [CrossRef] [Google Scholar]
  7. H. Karabulut, C. Cinar, E. Ozturk, H.S. Yucesu, Torque and power characteristics of a helium charged Stirling engine with a lever controlled displacer driving mechanism, Renew. Energy 35 (2010) 138–143 [CrossRef] [Google Scholar]
  8. C.H. Cheng, Y.J. Yu, Numerical model for predicting thermodynamic cycle and thermal efficiency of a beta-type Stirling engine with rhombic-drive mechanism, Renew. Energy 35 (2010) 2590–2601 [CrossRef] [Google Scholar]
  9. W.L. Chen, K.L. Wong, L.W. Po, A numerical analysis on the performance of a pressurized twin power piston gamma-type Stirling engine, Energy Convers. Manag. 62 (2012) 84–92 [CrossRef] [Google Scholar]
  10. F. Formosa, G. Despesse, Analytical model for Stirling cycle machine design, Energy Convers. Manag. 51 (2010) 1855–1863 [CrossRef] [Google Scholar]
  11. R. Tol, Autoregressive conditional heteroscedasticity in daily wind speed measurements, Theor. Appl. Climatol. 56 (1997) 113–122 [CrossRef] [Google Scholar]
  12. J. Torres, A. Garcia, M. de Blas, A. de Francisco, Forecast of hourly average wind speed with ARMA models in Navarre (Spain), Sol. Energy 79 (2005) 65–77 Energies 5 (2012) 3346 [Google Scholar]
  13. G.H. Riahy, M. Abedi, Short term wind speed forecasting for wind turbine applications using linear prediction method, Renew. Energy 33 (2008) 35–41 [CrossRef] [Google Scholar]
  14. Y.M. Atwa, E.F. El-Saadany, Annual wind speed estimation utilizing constrained grey predictor, IEEE Trans. Energy Conver. 24 (2009) 548–550 [CrossRef] [Google Scholar]
  15. T.H. El-Fouly, E.F. El-Saadany, M.M.A. Salama, Grey predictor for wind energy conversion systems output power prediction, IEEE Trans. Power Syst. 21 (2006) 1450–1452 [CrossRef] [Google Scholar]
  16. M. Lei, L. Shiyan, J. Chuanwen, L. Hongling, Z. Yan, A review on the forecasting of wind speed and generated power, Renew. Sustain. Energy Rev. 13 (2009) 915–920 [Google Scholar]
  17. M.A. Mohandes, T.O. Halawani, S. Rehman, A.A. Hussain, Support vector machines for wind speed prediction, Renew. Energy 29 (2004) 939–947 [CrossRef] [Google Scholar]
  18. A. UlHaque, J.L. Meng, Short-term wind speed forecasting based on fuzzy artmap, Int. J. Green Energy 8 (2011) 65–80 [CrossRef] [Google Scholar]
  19. Y.Y. Hong, H.L. Chang, C.S. Chiu, Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs, Energy 35 (2010) 3870–3876 [CrossRef] [Google Scholar]
  20. G.F. Fan, W.S. Wang, C. Liu, H.Z. Dai, Wind Power Prediction Based on Artificial Neural Network; Electric Power Research Institute, Beijing, China, 2008; pp. 118–123 [Google Scholar]
  21. A. Öztopal, Artificial neural network approach to spatial estimation of wind velocity data, Energy Convers. Manage. 47 (2006) 395–406 [CrossRef] [Google Scholar]
  22. T. Ackermann, Wind power in power systems, Wind Eng. 30 (2006) 447–449 [CrossRef] [Google Scholar]
  23. A. Kecebas, I. Yabanova, M. Yumurtacı, Artificial neural network modeling of geothermal district heating system thought exergy analysis, Energy Convers. Manag. 64 (2012) 206–212 [CrossRef] [Google Scholar]
  24. M. KianiDehKiani, B. Ghobadian, T. Tavakoli, A.M. Nikbakht, G. Najafi, Application of artificial neural networks for the prediction of performance and exhaust emissions in SI engine using ethanol- gasoline blends, Energy 35 (2010) 65–69 [CrossRef] [Google Scholar]
  25. R.M. Balabin, E.I. Lomakina, R.Z. Safieva, Neural network (ANN) approach to biodiesel analysis: Analysis of biodiesel density, kinematic viscosity, methanol and water contents using near infrared (NIR) spectroscopy, Fuel 90 (2011) 2007–2015 [CrossRef] [Google Scholar]
  26. M.A. Ahmadi, M. Ebadi, P.S. Marghmaleki, M.M. Fouladi, Evolving Predictive Model to Determine Condensate-to-Gas Ratio in Retrograded Condensate Gas Reservoirs, Fuel C 12 (2014) 241–257 [CrossRef] [Google Scholar]
  27. M.A. Ahmadi, M. Ebadi, Evolving smart approach for determination dew point pressure through condensate gas reservoirs, Fuel B 117 (2014) 1074–1084 [CrossRef] [Google Scholar]
  28. S. Zendehboudi, M.A. Ahmadi, A. Bahadori, A. Shafiei, T. Babadagli, A Developed Smart Technique to Predict Minimum Miscible Pressure-EOR Implication, Canadian J. Chem. Eng. 91 (2013) 1325–1337 [CrossRef] [Google Scholar]
  29. A. Chouai, S. Laugier, D. Richon, Modeling of thermodynamic properties using neural networks: application to refrigerants, Fluid Phase Equilib. 199 (2002) 53–62 [CrossRef] [Google Scholar]
  30. L. Piazza, G. Scalabrin, P. Marchi, D. Richon, Enhancement of the extended corresponding states techniques for thermodynamic modelling, I. Pure fluids, Int. J. Refrig. 29 (2006) 1182–1194 [CrossRef] [Google Scholar]
  31. G. Scalabrin, P. Marchi, L. Bettio, D. Richon, Enhancement of the extended corresponding states techniques for thermodynamic modelling, II. Mixtures, Int. J. Refrig. 29 (2006) 1195–1207 [CrossRef] [Google Scholar]
  32. M.A. Ahmadi, Neural Network Based Unified Particle Swarm Optimization for Prediction of Asphaltene Precipitation, Fluid Phase Equilibria 314 (2012) 46–51 [CrossRef] [Google Scholar]
  33. M.H. Ahmadi, M.A. Ahmadi, M. Mehrpooya, M.A. Rosen, Using GMDH Neural Networks to Model the Power and Torque of a Stirling Engine, Sustainability 7 (2015) 2243–2255 [CrossRef] [Google Scholar]
  34. S. Toghyani, M.H. Ahmadi, A. Kasaeian, A.H. Mohammadi, Artificial neural network, ANN-PSO and ANN-ICA for modelling the Stirling engine, Int. J. Ambient Energy (2014) 1–13 [Google Scholar]
  35. J.H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, 1975 [Google Scholar]
  36. M. Hagan, H.B. Demuth, M.H. Beale, Neural Network Design, International Thomson Publishing, Boston, 2002 [Google Scholar]
  37. J.A.K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, J. Vandewalle, Least Squares Support Vector Machines, World Scientific, Singapore, 2002 [Google Scholar]
  38. J.A.K. Suykens, J. Vandewalle, Least squares support vector machine classifiers, Neural Process. Lett. 9 (1999) 293–300 [Google Scholar]
  39. K. Pelckmans, J.A.K. Suykens, T. Van Gestel, D. De Brabanter, L. Lukas, B. Hamers, B. De Moor, J. Vandewalle, LS-SVM lab: a Matlab/C Toolbox for Least Squares Support Vector Machines, Internal Report 02-44, ESATSISTA, K.U. Leuven, Leuven, Belgium, 2002 [Google Scholar]
  40. M. Curilem, G. Acuña, F. Cubillos, E. Vyhmeister, Neural Networks and Support Vector Machine models applied to energy consumption optimization in semiautogeneous grinding, Chem. Eng. Trans. 25 (2011) 761–766 [Google Scholar]
  41. C. Cortes, V. Vapnik, Support-Vector Networks, Machine Learning 20 (1995), [Google Scholar]
  42. Support Vector Machine page, Wikipedia (accessed October 2011) [Google Scholar]
  43. R.M. Balabin, E.I. Lomakina, Support vector machine regression (LS-SVM) – an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data? Phys. Chem. Chem. Phys. 13 (2011) 11710–11718 [CrossRef] [PubMed] [Google Scholar]
  44. R.M. Balabin, R.Z. Safieva, Near-infrared (NIR) spectroscopy for biodiesel analysis: fractional composition, iodine value, and cold filter plugging point from one vibrational spectrum, Energy Fuels 25 (2011) 2373–2382 [CrossRef] [Google Scholar]
  45. R.M. Balabin, S.V. Smirnov, Variable selection in near-infrared spectroscopy: benchmarking of feature selection methods on biodiesel data, Anal. Chim. Acta 692 (2011) 63–72 [CrossRef] [PubMed] [Google Scholar]
  46. G.L. Ward, Performance characteristics of the Stirling engine. MSc thesis, University of Bath, 1972 [Google Scholar]
  47. J.I. Prieto, M.A. Gonzalez, C. Gonzalez, J. Fano, A new equation representing the performance of kinematic Stirling engines, Proc. Instn. Mech. Engrs. C 214 (2000) 449–464 [Google Scholar]
  48. S.R. Gunn, M. Brown, K.M. Bossley, Network performance assessment for neuro fuzzy data modeling, Lect. Notes Comput. Sci. 1280 (1997) 313–323 [CrossRef] [Google Scholar]
  49. M.H. Ahmadi, M.A. Ahmadi, S.A. Sadatsakkak, M. Feidt, Connectionist intelligent model estimates output power and torque of Stirling engine, Renew. Sustain. Energy Rev. 50 (2015) 871–883 [CrossRef] [Google Scholar]
  50. H. Liu, X. Yao, R. Zhang, M. Liu, Z. Hu, B. Fan, Accurate quantitative structure-property relationship model to predict the solubility of C60 in various solvents based on a novel approach using a least-squares support vector machine, J. Phys. Chem. B 109 (2005) 20565–20571 [CrossRef] [PubMed] [Google Scholar]
  51. M.A. Ahmadi, M. Ebadi, S.M. Hosseini, Prediction break through time of water coning in the fractured reservoirs by implementing low parameter support vector machine approach, Fuel A 117 (2014) 579–589 [CrossRef] [Google Scholar]
  52. P.J. Rousseeuw, A.M. Leroy, Robust Regression and Outlier Detection, John Wiley & Sons, New York, 1987 [Google Scholar]
  53. C.R. Goodall, Computation Using the QR Decomposition, Handbook in Statistics, 9. Elsevier/North-Holland, Amsterdam, 1993 [Google Scholar]
  54. P. Gramatica, Principles of QSAR models validation: internal and external, QSAR Comb. Sci. 26 (2007) 694–701 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.