Open Access
Mechanics & Industry
Volume 17, Number 6, 2016
Article Number 603
Number of page(s) 9
Published online 07 July 2016
  1. M.P. Taylor, B.J. Welch, M.J. O’Sullivan, Sidewall Ledge Dynamics in Cells Used for Electrowinning Aluminium, Proceedings of the Eleventh Australian Conference on Chemical Engineering, 1983, pp. 493–500. [Google Scholar]
  2. J.G. Peacey, G.W. Medlin, Cell Sidewall Studies at Noranda Aluminium, Proceedings of the Minerals, Metals & Materials Society (TMS), TMS, Warrendale, PA, 1979, pp. 475–491. [Google Scholar]
  3. J. Brännbacka, H. Saxén, Model for Fast Computation of Blast Furnace Hearth Erosion and Buildup Profiles, Ind. Eng. Chem. Res. 47 (2008) 7793–7801. [CrossRef] [Google Scholar]
  4. M. LeBreux, M. Désilets, M. Lacroix, Prediction of the Time-Varying Ledge Profile inside a High-Temperature Metallurgical Reactor with an Unscented Kalman Filter Based Virtual Sensor, Numer. Heat Transfer A 64 (2013) 551–576. [CrossRef] [Google Scholar]
  5. C.K. Chen, C.R. Su, Inverse Estimation for Temperatures of Outer Surface and Geometry of Inner Surface of Furnace with Two Layer walls, Energy Convers. Manage. 49 (2008) 301–310. [CrossRef] [Google Scholar]
  6. C.R. Su, C.K. Chen, Geometry Estimation of the Furnace Inner Wall by an Inverse Approach, Int. J. Heat Mass Transfer 50 (2007) 3767–3773. [CrossRef] [Google Scholar]
  7. C.R. Su, C.K. Chen, W.L. Liu, H.Y. Lai, Estimation for Inner Surface Geometry of Furnace Wall Using Inverse Process Combined with Grey Prediction Model, Int. J. Heat Mass Transfer 52 (2009) 3595–3605. [CrossRef] [Google Scholar]
  8. J. Torrkulla, H. Saxén, Model of the State of the Blast Furnace Hearth, ISIJ Int. 40 (2000) 438–447. [CrossRef] [Google Scholar]
  9. M. Gonzalez, M.B. Goldschmit, Inverse Geometry Heat Transfer Problem Based on a Radial Basis Functions Geometry Representation, Int. J. Numer. Methods Eng. 65 (2006) 1243–1268. [CrossRef] [Google Scholar]
  10. C.H. Huang, M.T. Chaing, A Transient Three-Dimensional Inverse Geometry Problem in Estimating the Space and Time-Dependent Irregular Boundary Shapes, Int. J. Heat Mass Transfer 51 (2008) 5238–5246. [CrossRef] [Google Scholar]
  11. D.P. Baker, G.S. Dulikravich, B.H. Dennis, T.J. Martin, Inverse Determination of Eroded Smelter Wall Thickness Variation Using an Elastic Membrane Concept, ASME, J. Heat Transfer 132 (2010) 052101-1–052101-8. [CrossRef] [Google Scholar]
  12. M. Kano, M. Ogawa, The State of the Art in Chemical Process Control in Japan: Good Practice and Questionnaire Survey, J. Process Control 20 (2010) 969–982. [Google Scholar]
  13. H. Heffes, The Effect of Erroneous Models on the Kalman Filter Response, IEEE Trans. Automat. Control 11 (1966) 541–543. [CrossRef] [Google Scholar]
  14. R. Mehra, On the Identification of Variances and Adaptive Kalman Filtering, IEEE Trans. Automat. Control 15 (1970) 175–184. [CrossRef] [Google Scholar]
  15. M.R. Myers, A.B. Jorge, D.E. Yuhas, D.G. Walker, An Adaptive Extended Kalman Filter Incorporating State Model Uncertainty for Localizing a High Heat Flux Spot Source Using an Ultrasonic Sensor Array, Comput. Model. Eng. Sci. 83 (2012) 221–248. [Google Scholar]
  16. M. LeBreux, M. Désilets, M. Lacroix, An Unscented Kalman Filter Inverse Heat Transfer Method for the Prediction of the Ledge Thickness Inside High-Temperature Metallurgical Reactors, Int. J. Heat Mass Transfer 57 (2013) 265–273. [CrossRef] [Google Scholar]
  17. S.J. Julier, J.K. Ulhmann, Unscented filtering and nonlinear estimation, Proc. IEEE 92 (2004) 401–422. [CrossRef] [Google Scholar]
  18. L. Xie, Y. Soh, C.E. de Souza, Robust Kalman Filtering for Uncertain Discrete-Time Systems, IEEE Trans. Automat. Control 39 (1994) 1310–1314. [CrossRef] [MathSciNet] [Google Scholar]
  19. A.V. Savkin, I.R. Petersen, Robust State Estimation and Model Validation for Discrete-Time Uncertain Uncertain Systems with a Deterministic Description of Noise and Uncertainty, Automatica 34 (1998) 271–274 [CrossRef] [MathSciNet] [Google Scholar]
  20. F. Wang, V. Balakrishnan, Robust Kalman Filters for Linear Time-Varying Systems with Stochastic Parametric Uncertainties, IEEE Trans. Signal Process. 50 (2002) 803–813. [CrossRef] [Google Scholar]
  21. D. Simon, Optimal state estimation: Kalman, H and nonlinear approaches, Wiley-Interscience, Hoboken, 2006. [Google Scholar]
  22. B. Blackwell, J.V. Beck, A Technique for Uncertainty Analysis for Inverse Heat Conduction Problems, Int. J. Heat Mass Transfer 53 (2010) 753–759. [CrossRef] [Google Scholar]
  23. A.F. Emery, A.V. Nenarokomov, T.D. Fadale, Uncertainties in Parameter Estimation: the Optimal Experiment Design, Int. J. Heat Mass Transfer 43 (2000) 3331–3339. [CrossRef] [Google Scholar]
  24. S.E. Davis, N.T. Wright, Optimal Positioning of Temperature Measurements to Estimate Thermal Diffusivity, Int. J. Thermophys. 34 (2013) 1021–1038. [CrossRef] [Google Scholar]
  25. F.P. Incropera, D.P. DeWitt, Fundamentals of Heat and Mass Transfer, 5th edition, John Wiley & Sons, 2002, pp. 428–434. [Google Scholar]
  26. M.P. Taylor, G.L. Johnson, E.W. Andrews, B.J. Welch, The Impact of Anode Cover Control and Anode Assembly Design on Reduction Cell Performance, Proceedings of the Minerals, Metals & Materials Society (TMS), TMS, Charlotte, NC, 2004, pp. 199–206. [Google Scholar]
  27. M.L. Slaugenhaupt, J.N. Bruggeman, G. Tarcy, N.R. Dando, Effect of Open Holes in the Crust on Gaseous Fluoride Evolution from Pots, Proceedings of the Minerals, Metals and Materials Society (TMS), TMS, San Diego, CA, 2003, pp. 199–204. [Google Scholar]
  28. J.N. Bruggemann, Pot Heat Balance Fundamentals, Proceedings of the 6th Australasian Al. Smelter Technology Conference and Workshops, 1998, pp. 167–189. [Google Scholar]
  29. C.C. Wei, J.J.J. Chen, B.J. Welch, V.R. Voller, Modelling of dynamic ledge heat transfer, Proceedings of the Minerals, Metals and Materials Society (TMS), TMS, Orlando, FL, 1997, pp. 309–316. [Google Scholar]
  30. M.P. Taylor, The Influence of Process Dynamics on the Heat Balance and Cell Operation in the Electrowinning of Aluminium, Ph.D. thesis, University of Auckland, 1984. [Google Scholar]
  31. G. Vidalain, L. Gosselin, M. Lacroix, An Enhanced Thermal Conduction Model for the Prediction of Convection Dominated Solid–Liquid Phase Change, International J. Heat Mass Transfer 52 (2009) 1753–1760. [CrossRef] [Google Scholar]
  32. V.R. Voller, C.R. Swaminathan, General Source-Based Method for Solidification Phase Change, Numer. Heat Transfer B 19 (1991) 175–189. [CrossRef] [Google Scholar]
  33. C.R. Swaminathan, V.R. Voller, A General Enthalpy Method for Modeling Solidification Processes, Metall. Trans. B (1992) 651–664. [Google Scholar]
  34. V. Alexiades, A.D. Solomon, Mathematical Modeling of Melting and Freezing Processes, Hemisphere, Washington, DC, 1993, pp. 34–38. [Google Scholar]
  35. J.V. Beck, B. Blackwell, C.R. St.-Clair, Inverse Heat Conduction: Ill-Posed Problems, John Wiley & Sons, New York, 1985. [Google Scholar]
  36. A.N. Tikhonov, V.Y. Arsenin, Solution of Ill-Posed Problems, Winston & Sons, Washington, D.C., 1977. [Google Scholar]
  37. S.J. Julier, J.K. Ulhmann, H.F. Durrant-Whyte, A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators, IEEE Trans. Automat. Control 45 (2000) 477–482. [Google Scholar]
  38. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C++, 2nd edition, Cambridge University Press, New York, 2002. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.