Open Access
Mechanics & Industry
Volume 17, Number 6, 2016
Article Number 606
Number of page(s) 12
Published online 07 July 2016
  1. S. Schreck, T. Sant, D. Micallef, Rotational augmentation disparities in the MEXICO and UAE Phase VI Experiments, Conference paper NREL/CP-500-47759, National Renewable Energy Laboratory, 2010 [Google Scholar]
  2. P.K. Chaviaropoulos, N.N. Soerensen, M.O.L. Hansen, I.G. Nikolaou, K.A. Aggelis, J. Johansen, M. Gaunaa, T. Hambraus, H. Frhr. von Geyr, Ch. Hirsch, K. Shun, S.G. Voutsinas, G. Tzabiras, Y. Perivolaris, S.Z. Dyrmose, Viscous and aeroelastic effects on wind turbine blades. the viscel project. part II: Aeroelastic stability investigations, Wind Energy 6 (2003) 387–403 [CrossRef] [Google Scholar]
  3. B. Yang, D. Sun, Testing, inspecting and monitoring technologies for wind turbine blades: A survey, Renew. Sustain. Energy Rev. 22 (2013) 515–526 [Google Scholar]
  4. W. Tong, Wind power generation and wind turbine design, WIT Press, 2010 [Google Scholar]
  5. J. Johansen, Unsteady airfoil flows with application to aeroelastic stability, Technical report, Risø National Laboratory, 1999 [Google Scholar]
  6. E.S. Politis, I.G. Nikolaou, P.K. Chaviaropoulos, F. Bertagnolio, N.N. Sørensen, J. Johansen, KNOW-BLADE Task-4 report; Navier-Stokes Aeroelasticity, Technical report, Risø National Laboratory, 2005 [Google Scholar]
  7. C.A. Baxevanou, P.K. Chaviaropoulos, S.G. Voutsinas, N.S. Vlachos, Evaluation study of a Navier-Stokes CFD aeroelastic model of wind turbine airfoils in classical flutter, J. Wind Eng. Ind. Aerodyn. 96 (2008) 1425–1443 [CrossRef] [Google Scholar]
  8. O. Guerri, A. Sakout, A. Hamdouni, Fluid structure interaction of wind turbine airfoils, Wind Eng. 32 (2008) 539–557 [CrossRef] [Google Scholar]
  9. C. Farhat, P. Geuzaine, G. Brown, Application of a three-field nonlinear fluid structure formulation to the prediction of the aeroelastic parameters of an F-16 fighter, Comput. Fluids 32 (2003) 3–29 [CrossRef] [Google Scholar]
  10. X.Y. Chen, G.C. Zha, Fully coupled fluid-structural interactions using an efficient high resolution upwind scheme, J. Fluids Struct. 20 (2005) 1105–1125 [CrossRef] [Google Scholar]
  11. X. Chen, G.C. Zha, M.T. Yang, Numerical simulation of 3-D wing flutter with fully coupled fluid-structural interaction, Comput. Fluids 36 (2007) 856–867 [CrossRef] [Google Scholar]
  12. P. Sváček, M. Feistauer, J. Horcáke,ˇ Numerical simulation of flow induced airfoil vibrations with large amplitudes, J. Fluids Struct. 23 (2007) 391–411 [Google Scholar]
  13. P. Sváček, Numerical approximation of fluid-structure interaction problems, Appl. Comput. Mech. 2 (2008) 133–144 [Google Scholar]
  14. D. Poirel, Y. Harris, A. Benaissa, Self-sustained aeroelastic oscillations of a NACA 0012 airfoil at low-to-moderate Reynolds numbers, J. Fluids Struct. 24 (2008) 700–719 [Google Scholar]
  15. D. Poirel, W. Yuan, Aerodynamics of laminar separation flutter at a transitional Reynolds number, J. Fluids Struct. 26 (2010) 1174–1194 [CrossRef] [Google Scholar]
  16. Y. Bai, D. Sun, J. Lin, D. Kennedy, F. Williams, Numerical aerodynamic simulations of a NACA airfoil using CFD with block-iterative coupling and turbulence modelling, Int. J. Comput. Fluid Dyn. 26 (2012) 119–132 [CrossRef] [MathSciNet] [Google Scholar]
  17. O. Guerri, K. Bouhadef, A. Harhad, Turbulent flow simulation of the NREL S809 airfoil, Wind Engineering 30 (2006) 287–302 [CrossRef] [Google Scholar]
  18. P. Catalano, M. Amato, An evaluation of rans turbulence modelling for aerodynamic applications, Aerospace Sci. Technol. 7 (2003) 493–509 [Google Scholar]
  19. F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J. 32 (1994) 1598–1605 [Google Scholar]
  20. F. Archambeau, N. Mechitoua, M. Sakiz, CodeSaturne: a finite volume code for the computation of turbulent incompressible flows-Industrial applications, Int. J. Finite1 (2004) 1–62 [Google Scholar]
  21. E. Longatte, Z. Bendjeddou, M. Souli, Methods for numerical study of tube bundle vibrations in cross-flows, J. Fluids Struct. 18 (2003) 513–528 [CrossRef] [Google Scholar]
  22. D. Somers, Design and experimental results for the S809 airfoil, Technical report, National Renewable Energy Labratory NREL, 1997 [Google Scholar]
  23. J.G. Schepers, A.J. Brand, A. Bruining, J.M.R. Graham, M.M. Hand, D.G. Infiel, H.A. Madsen, T. Maeda, J.H. Paynter, R. van Rooij, Y. Shimizu, D.A. Simms, N. Stefanatos, Final report of IEA Annex XVIII: Enhanced field rotor aerodynamics database, Technical report, Netherlands Energy Research Foundation, 2002 [Google Scholar]
  24. A. Pellegrino, C. Meskell, Vortex shedding from a wind turbine blade section at high angles of attack, J. Wind Eng. Ind. Aerodyn. 121 (2013) 131–137 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.