Open Access
Mechanics & Industry
Volume 18, Number 2, 2017
Article Number 209
Number of page(s) 8
Published online 31 January 2017
  1. S. Andrieux, A. Ben Abda, H.D. Bui, Reciprocity principle and crack identification, Inverse problems 15 (1999) 59–65 [Google Scholar]
  2. D.R. Aughan, A negative exponential solution for the matrix Riccati equation, IEEE Transactions on Automatic Control 14 (1969) 72–75 [Google Scholar]
  3. H.D. Bui, Introduction aux problmes inverses en mcanique des matriaux, ERREUR PERIMES Eyrolles, 1993 [Google Scholar]
  4. A. Corigliano, S. Mariani, Parameter identification in explicit structural dynamics: performance of the extended kalman filter, Comput. Methods Appl. Mech. Eng. 193 (2004) 3807–3835 [Google Scholar]
  5. S.M. Roberts, J.S. Shipman, Continuation in shooting methods for two-point boundary value problems, J. Mathematical Analysis Appl. 18 (1967) 45–58 [CrossRef] [MathSciNet] [Google Scholar]
  6. L. Rota, An inverse approach for identification of dynamic constitutive equations, In Ed A.A.Balkema, editor, Int. Symposium on Inverse Problems, 1969, pp. 251–256 [Google Scholar]
  7. O. Allix, P. Feissel, H.M. Nguyen, Identification strategy in the presence of corrupted measurements, Eng. Comput. 22 (2005) 487–504 [Google Scholar]
  8. P. Ladevze, Nonlinear Computational Structural Mechanics - New Approaches and Non-Incremental Methods of Calculation, Springer-Verlag, 1999 [Google Scholar]
  9. P. Sundararajan, S.T. Noah, An algorithm for response and stability of large order nonlinear systems - application to rotor systems, J. Sound Vib. 214 (1998) 695–723 [Google Scholar]
  10. A. Deraemaeker, P. Ladevze, Ph. Leconte, Reduced bases for model updating in structural dynamics based on constitutive relation error, Comput. Methods Appl. Mech. Eng. 191 (2002) 2427–2444 [Google Scholar]
  11. M. Mceneaney William, A new fundamental solution for differential Riccati equations arising in control, Automatica 44 (2007) 920–936 [CrossRef] [Google Scholar]
  12. F. Formosa, H. Abou-Kandil, M. Reynier, Updating of smart structures models using piezoelectric materials, 3rd World Conference on Structural Control IASC, 2002 [Google Scholar]
  13. P. Feissel, O. Allix, Modified constitutive relation error identification strategy for transient dynamics with corrupted data: The elastic case, Comput. Methods Appl. Mech. Eng. 196 (2007) 1968–1983 [Google Scholar]
  14. K. Burrage, Z. Jackiewicz, S.P. Nφrsett, R.A. Renaut, Preconditioning waveform relaxation iterations for differential systems, BIT 36 (1996) 54–76 [CrossRef] [MathSciNet] [Google Scholar]
  15. L. Raffort, Convergence of relaxation methods for two-point boundary-value linear problems, Systems and Control Letters 2 (1982) 184–188 [CrossRef] [Google Scholar]
  16. B. Wendi, S. Yongzhong, Two stage waveform relaxation method for the initial value problems of differential-algebraic equations, J. Comput. Appl. Mathematics 236 (2011) 1123–1136 [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.