Open Access
Issue
Mechanics & Industry
Volume 18, Number 2, 2017
Article Number 210
Number of page(s) 8
DOI https://doi.org/10.1051/meca/2016030
Published online 31 January 2017
  1. S. Nadeem, R.U. Haq, C. Lee, MHD flow of a Casson fluid over an exponentially shrinking sheet, Sci. Iranica B 19 (2012) 1550–1553 [CrossRef] [Google Scholar]
  2. T. Hayat, S.A. Shehzad, A. Alsaedi, Soret and Dufour effects on magnetohydrodynamic (MHD) flow of Casson fluid, Appl. Math. Mech. 33 (2012) 1301–1312 [CrossRef] [MathSciNet] [Google Scholar]
  3. K. Bhattacharyyaa, T. Hayat, A. Alsaedic, Analytic solution for magnetohydrodynamic boundary layer flow of Casson fluid over a stretching/shrinking sheet with wall mass transfer, Chin. Phys. B 22 (2013) 024702 [CrossRef] [Google Scholar]
  4. S. Mukhopadhyay, I. Chandra Mondal, A.J. Chamkha, Casson fluid flow and heat transfer past a symmetric wedge, Heat Transfer Asian Res. 42 (2013) 665–675 [CrossRef] [Google Scholar]
  5. S. Nadeem, R.U. Haq, N.S. Akbar, MHD three dimensional boundary layer flow of Casson nanofluid past a linearly stretching sheet with convective boundary condition, IEEE Trans. Nonotechnol. 13 (2014) 109–115 [CrossRef] [Google Scholar]
  6. R.U. Haq, S. Nadeem, Z.H. Khan, T.G. Okedayo, Convective heat transfer and MHD effects on Casson nanofluod flow over a shrinking sheet, Cent. Eur. J. Phys. 12 (2014) 862–871 [Google Scholar]
  7. C.S. Liu, J.R. Chang, The Lie-group shooting method for multiple-solutions of Falknera Skan equation under suction injection conditions, Int. J. Non-Linear Mech. 43 (2008) 844–851 [CrossRef] [Google Scholar]
  8. E. Alizadeh, M. Farhadi, K. Sedighi, H.R. Ebrahimi-Kebria, A. Ghafourian, Solution of the Falkner-Skan equation for wedge by Adomian Decomposition Method, Commun. Nonlinear Sci. Numer. Simul. 14 (2009) 724–733 [CrossRef] [Google Scholar]
  9. A. Postelnicu, I. Pop, Falkner-Skan boundary layer flow of a power-law fluid past a stretching wedge, Appl. Math. Comput. 217 (2011) 4359–4368 [MathSciNet] [Google Scholar]
  10. N.G. Kafoussias, N.D. Nanousis, Magnetohydrodynamic laminar boundary-layer flow over a wedge with suction or injection, Can. J. Phys. 75 (1997) 733–745 [CrossRef] [Google Scholar]
  11. S. Mukhopadhyay, I. Chandra Mandal, Boundary layer flow and heat transfer of a Casson fluid past a symmetric porous wedge with surface heat flux, Chin. Phys. B 23 (2014) 4 [Google Scholar]
  12. N. Kishan, P. Kavitha, Quasi linearization approach to MHD heat transfer to non-newtonian power-law fluids flowing over a wedge with heat source/sink in the presence of viscous dissipation, IJMCAR. 3 (2013) 15–28 [Google Scholar]
  13. N. Kishan, P. Amrutha, MHD heat transfer to non-Newtonian power-law fluids flowing over a wedge with viscous dissipation, IJAME 14 (2009) 965–987 [Google Scholar]
  14. M.A. Hossain, M.S. Munir, D.A.S. Rees, Flow of viscous incompressible fluid with temperature dependent viscosity and thermal conductivity past a permeable wedge with uniform surface heat flux, Int. J. Therm. Sci. 39 (2000) 635–644 [CrossRef] [Google Scholar]
  15. A.J. Chamkha, M.M. Quadri, I. Camille, Thermal radiation effects on MHD forced convection flow adjacent to a non-isothermal wedge in the presence of a heat source or sink, Heat Mass Transf 39 (2003) 305–312 [CrossRef] [Google Scholar]
  16. A. Pantokratoras, The Falkner-Skan flow with constant wall temperature and variable viscosity, Int. J. Therm. Sci. 45 (2006) 378–389 [CrossRef] [Google Scholar]
  17. S. Mukhopadhyay, Effects of radiation and variable fluid viscosity on flow and heat transfer along a symmetric wedge, J. Appl. Fluid. Mech. 2 (2009) 29–34 [Google Scholar]
  18. D. Pal, H. Mondal, Influence of temperature-dependent viscosity and thermal radiation on MHD forced convection over a nonisothermal wedge, Appl. Math. Comput. 212 (2009) 194–208 [Google Scholar]
  19. S.U.S. Choi, Enhancing Thermal Conductivity of Fluids with Nanoparticles, ASME, USA (1995) 99-105, FED231/MD [Google Scholar]
  20. M.Y. Malik, M. Naseer, S. Nadeem, A. Rehman, The boundary layer flow of Casson nanofluid over a vertical exponentially stretching cylinder, Appl. Nanosci. 4 (2014) 869–873 [CrossRef] [Google Scholar]
  21. Rizwan U.l. Haq, S. Nadeem, Z. Hayyat Khan, Toyin Gideon Okedayo, Convective heat transfer and MHD effects on Casson nanofluid flow over a shrinking sheet, Cent. Eur. J. Phys. 12 (2014) 862–871 [Google Scholar]
  22. M. Madhu, N. Kishan, Magnetohydrodynamic Mixed Convection Stagnation-Point Flow of a Power-Law Non-Newtonian Nanofluid towards a Stretching Surface with Radiation and Heat Source/Sink, J. Fluids 2015 (2015) ID634186 [CrossRef] [Google Scholar]
  23. M. Mustafa, J.A. Khan, Model for flow of Casson nanofluid past a non-linearly stretching sheet considering magnetic field effects, AIP Adv. 5 (2015) 077148 [CrossRef] [Google Scholar]
  24. W. Ibrahim, O.D. Makinde, Magnetohydrodynamic Stagnation Point Flow and Heat Transfer of Casson Nanofluid Past a Stretching Sheet with Slip and Convective Boundary Condition, J. Aerospace Eng. 29 (2015) 04015037 [CrossRef] [Google Scholar]
  25. J. Buongiorno, Convective transport in nanofluids, ASME J. Heat Transfer 128 (2006) 240–250 [CrossRef] [Google Scholar]
  26. A.V. Kuznetsov, D.A. Nield, Natural convective boundary-layer flow of a nanofluid past a vertical plate: A revised model, Int. J. Theor. Sci. 77 (2014) 126–129 [CrossRef] [Google Scholar]
  27. Yih KA. Forced convection flow adjacent to a non-isothermal wedge, Int. Commun. Heat Mass Transf. 26 (1996) 819–827 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.