Open Access
Issue |
Mechanics & Industry
Volume 18, Number 2, 2017
|
|
---|---|---|
Article Number | 204 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/meca/2016018 | |
Published online | 26 January 2017 |
- Q. Chen, X.G. Liang, Z.Y. Guo, Entransy theory for the optimization of heat transfer – a review and update, Int. J. Heat Mass Transfer 63 (2013) 65–81 [CrossRef] [Google Scholar]
- Z.Y. Guo, H.Y. Zhu, X.G. Liang, Entransy – a physical quantity describing heat transfer ability, Int. J. Heat Mass Transfer 50 (2007) 2545–2556 [Google Scholar]
- X.T. Cheng, X.G. Liang, Entransy loss in thermodynamic processes and its application, Energy 44 (2012) 964–972 [CrossRef] [Google Scholar]
- M.T. Xu, The thermodynamic basis of entransy and entransy dissipation, Energy 36 (2011) 4272–4277 [CrossRef] [Google Scholar]
- X.T. Cheng, W.H. Wang, X.G. Liang, Entransy analysis of open thermodynamic systems, Chin. Sci. Bull. 57 (2012) 2934–2940 [CrossRef] [Google Scholar]
- W. Wang, X.T. Cheng, X.G. Liang, Entropy and entransy analyses and optimizations of the Rankine cycle, Energy Convers. Manage. 68 (2013) 82–88 [CrossRef] [Google Scholar]
- W. Liu, Z.C. Liu, H. Jia, et al., Entransy expression of the second law of thermodynamics and its application to optimization in heat transfer process, Int. J. Heat Mass Transfer 54 (2011) 3049–3059 [CrossRef] [Google Scholar]
- L.G. Chen, S.H. Wei, F.R. Sun, Constructal entransy dissipation minimization for volume-point heat conduction, J. Phys. D 41 (2008) 195–506 [Google Scholar]
- Z.H. Xie, L.G. Chen, F.R. Sun, Constructal optimization for geometry of cavity by taking entransy dissipation minimization as objective, Sci. China Ser. E: Tech. Sci. 52 (2009) 3413–3504 [Google Scholar]
- Q. Chen, J.X. Ren, Generalized thermal resistance for convective heat transfer and its relation to entransy dissipation, Chin. Sci. Bull. 53 (2008) 3753–3761 [CrossRef] [Google Scholar]
- X.T. Cheng, X.G. Liang, Entransy flux of thermal radiation and its application to enclosures with opaque surfaces, Int. J. Heat Mass Transfer 54 (2011) 269–278 [CrossRef] [Google Scholar]
- X.T. Cheng, X.H. Xu, X.G. Liang, Radiative entransy flux in enclosures with nonisothermal or non-grey, opaque, diffuse surfaces and its application, Sci. China: Technol. Sci. 54 (2011) 2446–2456 [CrossRef] [Google Scholar]
- X.T. Cheng, X.G. Liang, Computation of effectiveness of two-stream heat exchanger networks based on concepts of entropy generation, entransy dissipation and entransy-dissipation-based thermal resistance, Energy Convers. Manage. 58 (2012) 163–170 [CrossRef] [Google Scholar]
- X.T. Cheng, X.H. Xu, X.G. Liang, Application of entransy to optimization design for parallel thermal network of thermal control system in spacecraft, Sci. China: Technol. Sci. 54 (2011) 964–971 [CrossRef] [Google Scholar]
- X.D. Qian, Z. Li, Z.X. Li, Entransy-dissipation-based thermal resistance analysis of heat exchanger networks, Chin. Sci. Bull. 56 (2011) 3289–3295 [CrossRef] [Google Scholar]
- X.T. Cheng, X.G. Liang, Z.Y. Guo, Entransy decrease principle of heat transfer in an isolated system, Chin. Sci. Bull. 56 (2011) 847e54 [CrossRef] [Google Scholar]
- X.T. Cheng, X.G. Liang, X.H. Xu, Microscopic expression of entransy, Acta Physica Sinica 60 (2011) 060512 [Google Scholar]
- Z.H. Xie, L.G. Chen, F.R. Sun, Constructal optimization on T-shaped cavity based on entransy dissipation minimization, Chin. Sci. Bull. 54 (2009) 4418–4427 [Google Scholar]
- Q.H. Xiao, L.G. Chen, F.R. Sun, Constructal entransy dissipation rate minimization for “disc-to-point” heat conduction, Chin. Sci. Bull. 56 (2011) 102–112 [CrossRef] [Google Scholar]
- J. Wu, X.G. Liang, Application of entransy dissipation extreme principle in radiative heat transfer optimization, Sci. China Ser. E Technol Sci. 51 (2008) 1306–1314 [CrossRef] [Google Scholar]
- S.J. Xia, L.G. Chen, F.R. Sun, Optimization for entransy dissipation minimization in heat exchanger, Chin. Sci. Bull. 54 (2009) 3572–3578 [Google Scholar]
- X.F. Li, J.F. Guo, M.T. Xu, L. Cheng, Entransy dissipation minimization for optimization of heat exchanger design, Chin. Sci. Bull. 56 (2011) 2174–2178 [CrossRef] [Google Scholar]
- X.D. Qian, Z.X. Li, Analysis of entransy dissipation in heat exchangers, Int. J. Thermal Sci. 50 (2011) 608–614 [CrossRef] [Google Scholar]
- L. Chen, S. Wei, F. Sun, Constructal entransy dissipation rate minimization of a disc, Int. J. Heat Mass Transfer 54 (2011) 210–216 [CrossRef] [Google Scholar]
- L. Chen, S. Wei, F. Sun, Constructal entransy dissipation rate minimization of round tube heat exchanger cross-section, Int. J. Them Sci. 50 (2011) 1285–1292 [CrossRef] [Google Scholar]
- S.H. Wei, L.G. Chen, F.R. Sun, Constructal optimization of discrete and continuous variable cross-section conducting path based on entransy dissipation rate minimization, Sci. China – Technol. Sci. 53 (2010) 1666–1677 [CrossRef] [Google Scholar]
- S.H. Wei, L.G. Chen, F.R. Sun, Constructal entransy dissipation minimisation for‘volume-point’ heat conduction without the premise of optimised last order construct, Int. J. Exergy 7 (2010) 627–639 [CrossRef] [Google Scholar]
- S.J. Xia, L.G. Chen, F.R. Sun, Optimal paths for minimizing entransy dissipation during heat transfer processes with generalized radiative heat transfer law, Appl. Math. Model 34 (2010) 2242–2255 [CrossRef] [Google Scholar]
- Q.H. Xiao, L.G. Chen, F.R. Sun, Constructal entransy dissipation rate minimization for a heat generating volume cooled by forced convection, Chin. Sci. Bull. 56 (2011) 2966–2973 [CrossRef] [Google Scholar]
- Q.H. Xiao, L.G. Chen, F.R. Sun, Constructal entransy dissipation rate minimization for heat conduction based on a tapered element, Chin. Sci. Bull. 56 (2011) 2400–2410 [CrossRef] [Google Scholar]
- Q.H. Xiao, L.G. Chen, F.R. Sun, Constructal entransy dissipation rate minimization for umbrella-shaped assembly of cylindrical fins, Sci. China. – Technol. Sci. 54 (2011) 211–219 [CrossRef] [Google Scholar]
- Z.H. Xie, L.G. Chen, F.R. Sun, Constructal optimization for geometry of cavity by taking entransy dissipation minimization as objective, Sci. China Ser. E – Technol. Sci. 52 (2009) 3504–3513 [CrossRef] [Google Scholar]
- Z.H. Xie, L.G. Chen, F.R. Sun, Comparative study on constructal optimizations of Tshaped fin based on entransy dissipation rate minimization and maximum thermal resistance minimization, Sci. China – Technol. Sci. 54 (2011) 1249–1258 [CrossRef] [Google Scholar]
- T. Özyer, M. Zhang, R. Alhajj, Integrating multi-objective genetic algorithm based clustering and data partitioning for skyline computation, Appl. Intell. 35 (2011) 110–122 [CrossRef] [Google Scholar]
- O. Beatrice, J.R. Brian, H. Franklin, Multi-Objective Genetic Algorithms for Vehicle Routing Problem with Time Windows, Appl. Intell. 24 (2006) 17–30 [CrossRef] [Google Scholar]
- I. Blecic, A. Cecchini, G. Trunfio, A decision support tool coupling a causal model and a multi-objective genetic algorithm, Appl. Intell. 26 (2007) 125–137 [CrossRef] [Google Scholar]
- D.A.V. Veldhuizen, G.B. Lamont, Multi objective evolutionary algorithms analyzing the state-of-the-art, Evol. Comput. 8 (2000) 125–147 [CrossRef] [PubMed] [Google Scholar]
- A. Konak, D.W. Coit, A.E. Smith, Multi-objective optimization using genetic algorithms: A tutorial, Reliab. Eng. Amp. Syst. Safe. 91 (2006) 992–1007 [Google Scholar]
- M.H. Ahmadi, M.A. Ahmadi, S.A. Sadatsakkak, Thermodynamic analysis and performance optimization of irreversible Carnot refrigerator by using multi-objective evolutionary algorithms (MOEAs), Renew. Sust. Energy Rev. 51 (2015) 1055–1070 [CrossRef] [Google Scholar]
- M.H. Ahmadi, M.A. Ahmadi, Thermodynamic analysis and optimisation of an irreversible radiative-type heat engine by using non-dominated sorting genetic algorithm, Int. J. Ambient Energy (2014) 1–6 [Google Scholar]
- M.H. Ahmadi, M.A. Ahmadi, A. Shafaei, M. Ashouri, S. Toghyani, Thermodynamic analysis and optimization of the Atkinson engine by using NSGA-II, Int. J. Low-Carbon Technol. (2015) ctv001 [Google Scholar]
- N.M. Mahdi, S. Farahat, F. Sarhaddi, Finite time exergy analysis and multi-objective ecological optimization of a regenerative Brayton cycle considering the impact of flow rate variations, Energy Convers. Manage. 103 (2015) 790–800 [CrossRef] [Google Scholar]
- T. Mojtaba, N. Babayan, F. Razi Astaraei, A. Moghadam, Multi objective optimization of horizontal axis tidal current turbines, using Meta heuristics algorithms, Energy Convers. Manage. 103 (2015) 487–498 [CrossRef] [Google Scholar]
- Arora, Rajesh, S.C. Kaushik, R. Kumar, R. Arora, Multi-objective thermo-economic optimization of solar parabolic dish Stirling heat engine with regenerative losses using NSGA-II and decision making, Int. J. Electr. Power Energy Syst. 74 (2016): 25–35 [CrossRef] [Google Scholar]
- M.H. Ahmadi, H. Hosseinzade, H. Sayyaadi, A.H. Mohammadi, F. Kimiaghalam, Application of the multi-objective optimization method for designing a powered Stirling heat engine: design with maximized power, thermal efficiency and minimized pressure loss, Renew. Energy (2013) 313–322 [Google Scholar]
- M.H. Ahmadi, H. Sayyaadi, A.H. Mohammadi, M.A. Barranco-Jimenez, Thermo-economic multi-objective optimization of solar dish-Stirling engine by implementing evolutionary algorithm, Energy Convers. Manage. 73 (2013) 370–380 [CrossRef] [Google Scholar]
- M.H. Ahmadi, H. Sayyaadi, S. Dehghani, H. Hosseinzade, Designing a solar powered Stirling heat engine based on multiple criterion: Maximized thermal efficiency and power, Energy Convers. Manage. 75 (2013) 282–291 [CrossRef] [Google Scholar]
- M.H. Ahmadi, S. Dehghani, A.H. Mohammadi, M. Feidt, M.A. Barranco-Jimenez, Optimal design of a solar driven heat engine based on thermal and thermo-economic criterion, Energy Convers. Manage. 75 (2013) 635–642 [Google Scholar]
- M.H. Ahmadi, M.A. Ahmadi, R. Bayat, M. Ashouri, M. Feidt, Thermo-economic optimization of Stirling heat pump by using non-dominated sorting genetic algorithm, Energy Convers. Manage. 91 (2015) 315–22 [CrossRef] [Google Scholar]
- A. Lazzaretto, A. Toffolo, Energy, economy and environment as objectives in multi-criterion optimization of thermal systems design, Energy, 29 (2004) 1139–1157 [CrossRef] [Google Scholar]
- S. Toghyani, A. Kasaeian, M.H. Ahmadi, Multi-objective optimization of Stirling engine using non-ideal adiabatic method, Energy Convers. Manage. 80 (2014) 54–62 [Google Scholar]
- A. Toffolo, A. Lazzaretto, Evolutionary algorithms for multi-objective energetic and economic optimization in thermal system design, Energy 27 (2002) 549–567 [CrossRef] [Google Scholar]
- M.H. Ahmadi, A.H. Mohammadi, S. Dehghani, Evaluation of the maximized power of a regenerative endoreversible Stirling cycle using the thermodynamic analysis, Energy Convers. Manage. 76 (2013) 561–570 [CrossRef] [Google Scholar]
- M.H. Ahmadi, M.A. Ahmadi, H.M. Amir, M. Feidt, S.M. Pourkiaei, Multi-objective optimization of an irreversible Stirling cryogenic refrigerator cycle, Energy Convers. Manage. 82 (2014) 351–360 [CrossRef] [Google Scholar]
- M.H. Ahmadi, M.A. Ahmadi, A.H. Mohammadi, M. Mehrpooya, M. Feidt, Thermodynamic optimization of Stirling heat pump based on multiple criterion, Energy Convers. Manage. 80 (2014) 319–328 [CrossRef] [Google Scholar]
- M.H. Ahmadi, A.H. Mohammadi, S. Dehghani, M.A. Barranco-Jimenez, Multi-objective thermodynamic-based optimization of output power of Solar Dish-Stirling engine by implementing an evolutionary algorithm, Energy Convers. Manage. 75 (2013) 438–445 [Google Scholar]
- M.H. Ahmadi, A.H. Mohammadi, S.M. Pourkiaei, 2014, Optimisation of the thermodynamic performance of the Stirling engine, Int. J. Ambient Energy, DOI: 10.1080/01430750.2014.907211 [Google Scholar]
- H. Sayyaadi, M.H. Ahmadi, S. Dehghani, Optimal Design of a Solar-Driven Heat Engine Based on Thermal and Ecological criterion, J. Energy Eng., (2014), 10.1061/(ASCE)EY.1943-7897.0000191 04014012. [Google Scholar]
- H. Sahraie, M.R. Mirani, M.H. Ahmadi, M. Ashouri, Thermo-economic and thermodynamic analysis and optimization of a two-stage irreversible heat pump, Energy Convers. Manage. 99 (2015) 81–91 [CrossRef] [Google Scholar]
- M.H. Ahmadi, M.A. Ahmadi, M. Mehrpooya, H. Hosseinzade, M. Feidt, Thermodynamic and thermoeconomic analysis and optimization of performance of irreversible four-temperature-level absorption refrigeration, Energy Convers. Manage. 88 (2014) 1051–1059 [CrossRef] [Google Scholar]
- M.H. Ahmadi, M.A. Ahmadi, Thermodynamic analysis and optimization of an irreversible Ericsson cryogenic refrigerator cycle, Energy Convers. Manage. 89 (2015) 147–55 [CrossRef] [Google Scholar]
- M.H. Ahmadi, M.A. Ahmadi, M. Mehrpooya, M. Sameti, Thermo-ecological analysis and optimization performance of an irreversible three-heat-source absorption heat pump, Energy Convers. Manage. 90 (2015) 175–183 [Google Scholar]
- M.H. Ahmadi, M.A. Ahmadi, M. Feidt, Performance optimization of a solar-driven multi-step irreversible Brayton cycle based on a multi-objective genetic algorithm, Oil Gas Science and Technology – Rev. IFP Energies nouvelles 2014. http://dx.doi.org/10.2516/ogst/2014028 [Google Scholar]
- M.H. Ahmadi, M.A. Ahmadi, M. Feidt, Thermodynamic analysis and evolutionary algorithm based on multi-objective optimization of performance for irreversible four-temperature-level refrigeration. Mech. Ind. 16 (2015) [Google Scholar]
- S.A. Sadatsakkak, M.H. Ahmadi, M.A. Ahmadi, Thermodynamic and thermo-economic analysis and optimization of an irreversible regenerative closed Brayton cycle, Energy Convers. Manage. 94 (2015) 124–129 [CrossRef] [Google Scholar]
- S.A. Sadatsakkak, et al., Optimization density power and thermal efficiency of an endoreversible Brayton cycle by using non-dominated sorting genetic algorithm, Energy Convers. Manage. 93 (2015) 31–39 [CrossRef] [Google Scholar]
- S.A. Sadatsakkak, M.H. Ahmadi, M.A. Ahmadi, Optimization performance and thermodynamic analysis of an irreversible nano scale Brayton cycle operating with Maxwell-Boltzmann gas, Energy Convers. Manage. 101 (2015) 592–605 [CrossRef] [Google Scholar]
- L. Chen, Z. Xiaoqin, F. Sun, C. Wu, Exergy-based ecological optimization for a generalized irreversible Carnot heat-pump, Appl. Energy 84 (2007) 78–88 [CrossRef] [Google Scholar]
- Z. Yan, L. Chen, Optimization of irreversible rate of exergy output for an endoreversible Carnot refrigerator, J. Phys. D Appl. Phys. 29 (1996) 3017–3021 [CrossRef] [Google Scholar]
- J. Chen, The maximum power output and maximum efficiency of an irreversible Carnot heat engine, J. Phys. D Appl. Phys. 27 (1994) 1144–1149 [CrossRef] [Google Scholar]
- Y. Ust, B. Sahin, A. Kodal, Performance optimisation of irreversible cogeneration system based on a new exergetic performance criterion: exergy density, J. Energy. Inst. 82 (2009) 48–52 [CrossRef] [Google Scholar]
- E. Acıkkalp, H. Yamık, Limits and optimization of power input or output of actual thermal cycles, Entropy 15 (2013) 3219–3248 [CrossRef] [Google Scholar]
- E. Acıkkalp, Models for optimum thermo-ecological criterion of actual thermal cycles, Therm. Sci. 17 (2013) 915–930 [CrossRef] [Google Scholar]
- E. Açıkkalp, Entransy analysis of irreversible Carnot-like heat engine and refrigeration cycles and the relationships among various thermodynamic parameters, Energy Convers. Manage. 80 (2014) 535–542 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.