Open Access
Issue
Mechanics & Industry
Volume 18, Number 2, 2017
Article Number 217
Number of page(s) 15
DOI https://doi.org/10.1051/meca/2016020
Published online 17 February 2017
  1. Y. Dai, J. Wang, L. Gao, Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery, Energy Convers. Manag. (2009) 576−582 [CrossRef] [Google Scholar]
  2. X.D. Wang, L. Zhao, J.L. Wang, W.Z. Zhang, X.Z. Zhao, W. Wu, Performance evaluation of a low-temperature solar Rankine cycle system utilizing R245fa, Solar Energy 84 (2010) 353−364 [CrossRef] [Google Scholar]
  3. T. Guo, H.X. Wang, S.J. Jhang, Selection of working fluids for a novel low-temperature geothermally powered ORC based cogeneration system, Energy Convers. Management. (2011) 946−952 [Google Scholar]
  4. H. Chen, D.Y. Goswami, E. Stefanakos, A review of thermodynamic cycles and working fluids for the conversion of low-grade heat, Renew. Sust. Energy Rev. 14 (2010) 3059-3067 [CrossRef] [Google Scholar]
  5. B.F. Tchanche, Gr. Lambrinos, A. Frangoudakis, G. Papadakis, Low-grade heat conversion into power using organic Rankine cycles a review of various applications, Renew. Sustain. Energy Rev. 15 (2011) 3963-3979 [CrossRef] [Google Scholar]
  6. J. Li, G. Pei, J. Ji, Optimization of low temperature solar thermal electric generation with Organic Rankine Cycle in different areas, Appl. Energy 87 (2010) 3355-3365 [CrossRef] [Google Scholar]
  7. G. Pei, J. Li, J. Ji, Analysis of low temperature solar thermal electric generation using regenerative Organic Rankine Cycle, Appl. Thermal Energy 30 (2010) 998-1004 [CrossRef] [Google Scholar]
  8. S. Quoilin, M. Orosz, H. Hemond, V. Lemort, Performance and design optimization of a low-cost solar organic Rankine cycle for remote power generation, Solar Energy 85 (2011) 955-966 [CrossRef] [Google Scholar]
  9. R. Rayegan, YX. Tao, A procedure to select working fluids for Solar Organic Rankine Cycles (ORCs), Renew. Energy 36 (2011) 659-670 [CrossRef] [Google Scholar]
  10. J.L. Wang, L. Zhao, X.D. Wang, A comparative study of pure and zeotropic mixtures in low-temperature solar Rankine cycle. Appl. Energy. 87 (2010) 3366-3373 [CrossRef] [Google Scholar]
  11. Y.L. He, D.H. Mei, W.Q. Tao, W.W. Yang, H.L. Liu, Simulation of the parabolic trough solar energy generation system with Organic Rankine Cycle, Appl. Energy. 97 (2012) 630-641 [CrossRef] [Google Scholar]
  12. A.M. Delgado-Torres, L. García-Rodríguez. Analysis and optimization of the low temperature solar organic Rankine cycle (ORC), Energy Convers. Manag. 51 (2010) 2846-2856 [CrossRef] [Google Scholar]
  13. A.M. Delgado-Torres, L. García-Rodríguez, Preliminary assessment of solar organic Rankine cycles for driving a desalination system. Desalination. 216 (2007) 252-275 [CrossRef] [Google Scholar]
  14. A.M. Delgado-Torres, L. García-Rodríguez, Double cascade organic Rankine cycle for solar-driven reverse osmosis desalination, Desalination 216 (2007) 306-313 [CrossRef] [Google Scholar]
  15. G. Kosmadakis, D. Manolakos, G. Papadakis, Parametric theoretical study of a two-stage solar organic Rankine cycle for RO desalination, Renew. Energy. 35 (2010) 989-996 [CrossRef] [Google Scholar]
  16. G. Kosmadakis, D. Manolakos, S. Kyritsis, G. Papadakis, Economic assessment of a two-stage solar organic Rankine cycle for reverse osmosis desalination, Renew. Energy 34 (2009) 1579-1586 [CrossRef] [Google Scholar]
  17. C. Li, G. Kosmadakis, D. Manolakos, E. Stefanakos, G. Papadakis, D.Y. Goswami, Performance investigation of concentrating solar collectors coupled with a transcritical organic Rankine cycle for power and seawater desalination cogeneration, Desalination. 318 (2013) 107-117 [CrossRef] [Google Scholar]
  18. A.S. Nafey, M.A. Sharaf, Combined solar organic Rankine cycle with reverse osmosis desalination process: energy, exergy, and cost evaluations, Renew. Energy 35 (2010) 2571-2580 [CrossRef] [Google Scholar]
  19. A.S. Nafey, M.A. Sharaf, L. García-Rodríguez, Thermo-economic analysis of a combined solar organic Rankine cycle-reverse osmosis desalination process with different energy recovery configurations, Desalination 261 (2010) 138-147 [CrossRef] [Google Scholar]
  20. B. Peñate, L. García-Rodríguez, Seawater reverse osmosis desalination driven by a solar Organic Rankine Cycle: design and technology assessment for medium capacity range, Desalination 284 (2012) 86-91 [CrossRef] [Google Scholar]
  21. J.C. Bruno, J. López-Villada, E. Letelier, S. Romera, A. Coronas, Modelling and optimisation of solar organic Rankine cycle engines for reverse osmosis d esalination, Appl. Thermal Eng. 28 (2008) 2212-2226 [CrossRef] [Google Scholar]
  22. B.F. Tchanche, G.R. Lambrinos, A. Frangoudakis, G. Papadakis. Exergy analysis of micro-organic Rankine power cycles for a small scale solar driven reverse osmosis desalination system, Appl. Energy 87 (2010) 1295-1306 [CrossRef] [Google Scholar]
  23. M. Wang, J.F. Wang, Y.Z. Zhao, P. Zhao, Y.P. Dai. Thermodynamic analysis and optimization of a solar-driven regenerative organic Rankine cycle (ORC) based on flat-plate solar collectors, Appl. Thermal Energy 50 (2013) 816-825 [CrossRef] [Google Scholar]
  24. Wang Jiangfeng, Zhequan Yan, Pan Zhao, Yiping Dai. Off-design performance analysis of a solar-powered organic Rankine cycle, Energy Convers. Manage. 80 (2014) 150-157 [CrossRef] [Google Scholar]
  25. Jiangfeng Wang, Zhequan Yan, Enmin Zhou, Yiping Dai, Parametric analysis and optimization of a Kalina cycle driven by solar energy, Appl. Thermal Eng. 50 (2013) 408–415 [CrossRef] [Google Scholar]
  26. Pouria Ahmadi, Ibrahim Dincer, Marc A. Rosen, Energy and exergy analyses of hydrogen production via solar-boosted ocean thermal energy conversion and PEM electrolysis., Int. J. Hydrogen Energy 38 (2013) 1795–1805 [CrossRef] [Google Scholar]
  27. Fahad A. Al-Sulaiman Exergy analysis of parabolic trough solar collectors integrated with combined steam and organic Rankine cycles, Energy Conver. Manage. 77 (2014) 441-449 [CrossRef] [Google Scholar]
  28. A.C. Mcmahan, Design Optimization of Organic Rankine Cycle Solar-Thermal Powerplants, MSc Thesis, 2006 [Google Scholar]
  29. Renewable energy organization of IRAN (SANA), Database for solar irradiation, http://www.suna.org.ir/en/home [Google Scholar]
  30. J.A. Duffie, W.A. Beckman. Solar engineering of thermal processes, 3rd edition, J. Willey & Sons, New York 2006 [Google Scholar]
  31. S. Sukhatme, Solar Energy-principles of Thermal Collection and Storage, Tata McGraw-Hill Publishing Company Limited, India, 1984 [Google Scholar]
  32. Ibrahim Dincer, Marc A. Rosen. Exergy, Energy, Environment and sustainable development, 1st ed.Elsevier Science, 2007 [Google Scholar]
  33. V. Siva Reddy, S.C. Kaushik, K.R. Ranjan, S.K. Tyagi, State-of-the-art of solar thermal power plants - A review. Renew, Sust. Energy Rev. 27 (2013) 258-273 [CrossRef] [Google Scholar]
  34. NIST Standard Reference Database 23, NIST Thermodynamic and Transport Properties of Refrigerants and Refrigerant Mixtures REFROP, Version 8.0 (2007) [Google Scholar]
  35. Petela R. Exergy analysis of the solar cylindrical-parabolic cooker, Sol Energy 79 (2005) 221-233 [Google Scholar]
  36. Bejan A, Tsatsaronis G, Moran M. Thermal design and optimization, JohnWiley and Sons, Inc., 1996 [Google Scholar]
  37. Ameri M, Ahmadi P. The study of ambient temperature effects on exergy losses of a heat recovery steam generator. Proceeding of the International Conference on power engineering. Hang Zhou, China, 2007, pp. 55–61 [Google Scholar]
  38. Pouria Ahmadi, Ibrahim Dincer, Marc A. Rosen, Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants, Energy 36 (2011) 5886–5898 [CrossRef] [Google Scholar]
  39. S. Farahat, F. Sarhaddi, H. Ajam, Exergetic optimization of flat plate solar collectors, Renew, Energy 34 (2009) 1169-1174 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.