Open Access
Mechanics & Industry
Volume 18, Number 2, 2017
Article Number 218
Number of page(s) 11
Published online 17 February 2017
  1. A. Hacquin, Modelisation thermo-mecanique tridimensionnelle du laminage: couplage bande-cylindres, Ph.D. thesis, Cemef École des Mines de Paris, 1996 [Google Scholar]
  2. S. Abdelkhalek, P. Montmitonnet, N. Legrand, P. Buessler, Coupled approach for flatness prediction in cold rolling of thin strip, Int. J. Mech. Sci. 53 (2011) 661–675 [CrossRef] [Google Scholar]
  3. P. Montmitonnet, Hot and cold strip rolling processes, Comput. Methods Appl. Mech. Eng. 195 (2006) 6604–6625 [Google Scholar]
  4. D. Weisz-Patrault, A. Ehrlacher, N. Legrand, A new sensor for the evaluation of contact stress by inverse analysis during steel strip rolling, J. Mater. Process. Technol. 211 (2011) 1500–1509 [CrossRef] [Google Scholar]
  5. D. Weisz-Patrault, A. Ehrlacher, N. Legrand, Evaluation of contact stress during rolling process, by three dimensional analytical inverse method, Int. J. Solids Struct. 50 (2013) 3319–3331 [Google Scholar]
  6. D. Weisz-Patrault, L. Maurin, N. Legrand, A.B. Salem, A. Ait Bengrir, Experimental evaluation of contact stress during cold rolling process with optical fiber bragg gratings sensors measurements and fast inverse method, J. Mater. Process. Technol. 223 (2015) 105–123 [CrossRef] [Google Scholar]
  7. D. Weisz-Patrault, A. Ehrlacher, N. Legrand, Evaluation of temperature field and heat flux by inverse analysis during steel strip rolling, Int. J. Heat Mass Transf. 55 (2012) 629–641 [Google Scholar]
  8. N. Legrand, D. Weisz-Patrault, N. Labbe, A. Ehrlacher, T. Luks, J. Horsky, Characterization of roll bite heat transfers in hot steel strip rolling and their influence on roll thermal fatigue degradation, Key Eng. Mater. 554-557 (2013) 1555–1569 [Google Scholar]
  9. D. Weisz-Patrault, A. Ehrlacher, N. Legrand, Temperature and heat flux fast estimation during rolling process, Int. J. Thermal Sci. 75 (2014) 1–20 [CrossRef] [Google Scholar]
  10. D. Weisz-Patrault, Inverse cauchy method with conformal mapping: application to latent flatness defect detection during rolling process, Int. J. Solids Struct. 56-57 (2014) 175–193 [Google Scholar]
  11. W.J. Edwards, G. Boulton, The mystery of coil winding, In2001 Iron and Steel Exposition and AISE Annual Convention, page 2001, 2001 [Google Scholar]
  12. J.L. Hinton, A Study on the Effects of Coil Wedge During Rewinding of Thin Gauge Metals, Ph.D. thesis, Wright State University, 2011 [Google Scholar]
  13. J.M. Hudzia, F. Ferrauto, P. Gevers, Stress calculation applied to a coil, and optimization of coiling tension, Cah. Inf. Tech. Rev. Metall. 91 (1994) 937–943 [Google Scholar]
  14. D. Weisz-Patrault, A. Ehrlacher, N. Legrand, E. Mathey, Non-linear numerical simulation of coiling by elastic finite strain model, Key Eng. Mater. 651-653 (2015) 1060–1065 [Google Scholar]
  15. W.M. Quach, J.G. Teng, K.F. Chung, Residual stresses in steel sheets due to coiling and uncoiling: a closed-form analytical solution, Eng. Struct. 26 (2004) 1249–1259 [Google Scholar]
  16. CEA, Cast3m, 2011, Commissariat A l’Energie Atomique, [Google Scholar]
  17. Users Manual Abaqus, Abaqus, 2006 [Google Scholar]
  18. D. Weisz-Patrault, A. Ehrlacher, N. Legrand, Non-linear simulation of coiling accounting for roughness of contacts and multiplicative elastic-plastic behavior, Int. J. Solids Struct. 94-95 (2016) 1–20 [Google Scholar]
  19. H. Le Dang, Modélisation simplifiée des processus de laminage (Simplified model of rolling process), Ph.D. thesis, École des Ponts ParisTech, 2013 [Google Scholar]
  20. S.W. Sloan, J.R. Booke, Removal of singularities in tresca and mohr–coulomb yield functions, Commun. Appl. Numerical Methods 2 (1986) 173–179 [CrossRef] [Google Scholar]
  21. A.J. Abbo, S.W. Sloan, A smooth hyperbolic approximation to the mohr-coulomb yield criterion, Comput. Struct. 54 (1995) 427–441 [Google Scholar]
  22. J.C. Simo, J.G. Kennedy, S. Govindjee, Non-smooth multisurface plasticity and viscoplasticity. loading/unloading conditions and numerical algorithms, Int. J. Numerical Methods Eng. 26 (1988) 2161–2185 [CrossRef] [Google Scholar]
  23. J.C. Simo, R.L. Taylor, A return mapping algorithm for plane stress elastoplasticity, Int. J. Numerical Methods Eng. 22 (1986) 649–670 [CrossRef] [Google Scholar]
  24. N. Bićanić et al., Detection of multiple active yield conditions for mohr-coulomb elasto-plasticity, Comput. Struct. 62 (1997) 51–61 [Google Scholar]
  25. J. Clausen, L. Damkilde, L. Andersen, Efficient return algorithms for associated plasticity with multiple yield planes, Int. J. Numerical Methods Eng. 6 (2006) 1036–1059 [CrossRef] [Google Scholar]
  26. F.E. Karaoulanis, Implicit numerical integration of nonsmooth multisurface yield criteria in the principal stress space, Arch. Comput. Methods in En. 20 (2013) 263–308 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.