Open Access
Mechanics & Industry
Volume 18, Number 2, 2017
Article Number 207
Number of page(s) 14
Published online 26 January 2017
  1. Y.Y. Özbek, M.Durman, H. Akbulut, Wear Behavior of AISI 8620 Steel Modified by a Pulse-Plasma Technique, Tribol. Trans. 52 (2009) 213–222 [CrossRef] [Google Scholar]
  2. J.R. Laguna-Camacho, L.Y. Villagran-Villegas, H. Martınez-Garcia, G. Juarez-Morales, M.I. Cruz-Orduna, M. Vite-Torres, L. Rios-Velasco, I. Hernandez-Romero, A study of the wear damage on gas turbine blades Engineering Failure Analysis, 2015 [Google Scholar]
  3. S.M. Zamani, S.A. Hassanzadeh-Tabrizi, H. Sharif, Failure analysis of drill pipe: A review, Eng. Failure Anal. 59 (2016) 605–623 [CrossRef] [Google Scholar]
  4. M. Ibrahim, M. Deiaba, A. Elbestawi, Experimental determination of the friction coefficient on the workpiece-fixture contact surface in workholding applications, Int. J. Machine Tools Manuf. 45 (2005) 705–712 [CrossRef] [Google Scholar]
  5. M.Z. Huq, J.-P. Celis, Expressing wear rate in sliding contacts based on dissipated energy, Wear 252 (2002) 375–383 [CrossRef] [Google Scholar]
  6. F.B. Saada, K. Elleuch, Damage of stainless steel components by olive paste, Tribol. Trans., DOI: 10.1080/10402004.2015.1115569 [Google Scholar]
  7. P.L. Menezesa, Kishorea, S.V. Kailasb, Influence of surface texture and roughness parameters on friction and transfer layer formation during sliding of aluminum pin on steel plate, Wear 267 (2009) 1534–1549 [CrossRef] [Google Scholar]
  8. S.V. Kailas, P.L. Menezes, Coefficient of friction and material transfer studies of an Al–Mg alloy pin on EN8 steel flat using inclined scratch, Proceedings of International Seminar on Metal Forming-Process Design and Optimization (2003) 124–143 [Google Scholar]
  9. D.K. Dwivedi, T.S. Arjun, P. Thakur, H. Vaidya, K. Singh, Sliding wear and friction behavior of Al–18% Si–0.5% Mg alloy, J. Mater. Process. Technol. 152 (2004) 323–328 [CrossRef] [Google Scholar]
  10. S.C. Lim, M.F. Ashby, J.H. Brunton, The effects of sliding conditions on the dry friction of metals, Acta Metall. 37 (1989) 767–772 [CrossRef] [Google Scholar]
  11. J.M. Lanzon, M.J. Cardew-Hall, P.D. Hodgson, Characterising frictional behavior in sheet metal forming, J. Mater. Process. Technol. 8081 (1998) 251–256 [CrossRef] [Google Scholar]
  12. I. Nogueira, A.M. Dias, R. Gras, R. Progri, An experimental model for mixed friction during running-in, Wear 253 (2002) 541–549 [CrossRef] [Google Scholar]
  13. T. Kayaba, A study of the wear and friction of some bearing materials, Wear 5 (1962) 173–181 [CrossRef] [Google Scholar]
  14. M.O.A. Zaki, G.S.A. Shawki, Effect of mechanical properties on frictional behaviour of metals, Tribol. Int. 12 (1979) 265–268 [CrossRef] [Google Scholar]
  15. Z. Rymuza, Energy concept of the coefficient of friction, Wear 199 (1996) 187–196 [CrossRef] [Google Scholar]
  16. P.L. Menezes Kishore, S.V. Kailas, Effect of surface topography on friction and transfer layer during sliding, Tribol. Online 3 (2008) 25–30 [CrossRef] [Google Scholar]
  17. M.R. Lovell, Z. Deng, M.M. Khonsari, Experimental characterization of sliding friction: crossing from deformation to plowing contact, Trans. ASME 122 (2000) 856–863 [CrossRef] [Google Scholar]
  18. D.H.H. Wang, K.H.Z. Gahr, Transition from static to kinetic friction of unlubricated or oil lubricated steel/steel, steel/ceramic and ceramic/ceramic pairs, Wear 255 (2003) 365–375 [CrossRef] [Google Scholar]
  19. H.D. Fridman, P. Levesque, Reduction of static friction by sonic vibrations, J. Appl. Phys. 30 (1959)1572–1575 [CrossRef] [Google Scholar]
  20. K. Hiratsuka, A. Enomoto, T. Sasada, Friction and wear of A12O3, ZrO2 and SiO2 rubbed against pure metals, Wear 153 (1992) 361–373 [CrossRef] [Google Scholar]
  21. F. Goutier, S. Valette, A. Vardelle, P. Lefort, Oxidation of stainless steel 304 L in carbon dioxide, Corros. Sci. 52 (2010) 2403–2412 [CrossRef] [Google Scholar]
  22. K.L. Johnson, Contact Mechanics, Cambridge University Press, 1985 [Google Scholar]
  23. M. Hua, X. Wei, J. Li, Friction and wear behavior of SUS 304 austenitic stainless steel against Al2O3 ceramic ball under relative high load, Wear 265 (2008) 799–810 [CrossRef] [Google Scholar]
  24. G. Straffelini, A. Molinari, D. Trabucco, Sliding wear of austenitic and austenitic-ferritic stainless steels, Metall. Mater. Trans. A 33 (2002) 613–624 [CrossRef] [Google Scholar]
  25. A. Van Herpen, B. Reynier, C. Phalippou, Effect of test duration on impact/sliding wear damage of 304 L stainless steel at room temperature: metallurgical and micromechanical investigations, Wear 249 (2001) 37–49 [CrossRef] [Google Scholar]
  26. T.F.J. Quinn, Review of oxidational wear, Trib. Int. 16 (1983) 306–315 [Google Scholar]
  27. D. Wei, J. Huang, A. Zhang, Z. Jiang, A. Tieu, F. Wu, X. Shi, S. Jiao, Deformation of oxide scale and surface roughness transfer during hot rolling of stainless steel 304 L Science, Eng. Technol. 3 (2009) 459-470 [Google Scholar]
  28. W. Hubner, A. Pyzalla, K. Assmus, E. Wild, T. Wroblewski, Phase stability of AISI 304 stainless steel during sliding wear at extremely low temperature, Wear 255 (2003) 476–480 [CrossRef] [Google Scholar]
  29. F.P. Bowden, D. Tabor, The Friction and Lubrication of Solids, Oxford Science. Oxford (1986) 119–120 [Google Scholar]
  30. H. Cetinela, E. Celikb, M. Kusoglub, Tribological behavior of Cr2O3 coatings as bearing materials, J. Mater. Process. Technol. 196 (2008) 25–265 [Google Scholar]
  31. M. Estevesa, A. Ramalhoa, F. Ramosb, Fretting behaviour of the AISI 304 stainless steel under different atmosphere environments, Tribol. Int. (2015) [Google Scholar]
  32. S. Fouvry, Ph. Kapsa, L. Vincent, Quantification of fretting damage, Wear 200 (1996) 186–205 [CrossRef] [Google Scholar]
  33. S. Fouvry, Ph. Kapsa, An energy description of hard coatings wear mechanisms, Surf. Coat. Technol. 138 (2001) 141–148 [CrossRef] [Google Scholar]
  34. A. Ramalhoa, J.C. Miranda, The relationship between wear and dissipated energy in sliding systems, Wear 260 (2006) 361–367 [CrossRef] [Google Scholar]
  35. N. Guermazi, K. Elleuch, H.F. Ayedi, V. Fridrici, Ph. Kapsa, Tribological behaviour of pipe coating in dry sliding contact with steel, Mater. Design 30 (2009) 3094–3104 [CrossRef] [Google Scholar]
  36. J. Fernfindez-Bolafios, B. Felizon, A. Heredia, R. Guillin, A. Jimnez, Characterization of the lignin obtained by alkaline delignification and of the cellulose residue from steam-exploded olive stones, Bio-resource Technol. 68 (1999) 121–132 [CrossRef] [Google Scholar]
  37. C. Cara, E. Ruiz, I. Ballesteros, M.J. Negro, E. Castro, Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification, Process Biochemistry 41 (2006) 423–429 [CrossRef] [Google Scholar]
  38. A. Garcia-Maraver, D. Salvachúa, M.J. Martínez, L.F. Diaz, M. Zamorano, Analysis of the relation between the cellulose, hemicellulose and lignin content and the thermal behavior of residual biomass from olive trees, Waste Management 33 (2013) 2245–2249 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.