Open Access
Issue
Mechanics & Industry
Volume 18, Number 2, 2017
Article Number 224
Number of page(s) 13
DOI https://doi.org/10.1051/meca/2016051
Published online 16 March 2017
  1. Z. Hongbin, Exergy Analysis of a Steam Power Plant with Direct Air-Cooling System in China, in Power and Energy Engineering Conference, 2009. APPEEC 2009, Asia-Pacific, 2009, pp. 1-4 [Google Scholar]
  2. I.H. Aljundi, Energy and exergy analysis of a steam power plant in Jordan, Appl. Thermal Eng. 29 (2009) 324–328 [CrossRef] [Google Scholar]
  3. M.A. Rosen, R. Tang, Improving steam power plant efficiency through exergy analysis: effects of altering excess combustion air and stack-gas temperature, Int. J. Exergy 5 (2008) 31–51 [CrossRef] [Google Scholar]
  4. H. Rosyid, R. Koestoer, N. Putra, A. Mohamad, Sensitivity analysis of steam power plant-binary cycle, Energy 35 (2010) 3578-3586 [CrossRef] [Google Scholar]
  5. A.M.K. Vandani, M. Bidi, F. Ahmadi, Exergy analysis and evolutionary optimization of boiler blowdown heat recovery in steam power plants, Energy Convers. Manag. 106 (2015) 1–9 [CrossRef] [Google Scholar]
  6. G. Xu, Y. Hu, B. Tang, Y. Yang, K. Zhang, W. Liu, Integration of the steam cycle and CO 2 capture process in a decarbonization power plant, Appl. Thermal Eng. 73 (2014) 277-286 [CrossRef] [Google Scholar]
  7. O.K. Singh, S. Kaushik, Energy and exergy analysis and optimization of Kalina cycle coupled with a coal fired steam power plant, Appl. Thermal Eng. 51 (2013) 787–800 [CrossRef] [Google Scholar]
  8. M. Suresh, K. Reddy, A.K. Kolar, Thermodynamic optimization of advanced steam power plants retrofitted for oxy-coal combustion, J. Eng. Gas Turbines Power 133 (2011) 063001 [CrossRef] [Google Scholar]
  9. Z. Li, Z.M. Li, Z.L. Yan, Energy and Exergy Analysis for Three Type 500MW Steam Power Plants, Appl. Mech. Mater. (2012) 1131–1136 [Google Scholar]
  10. G. Xu, L. Zhou, S. Zhao, F. Liang, C. Xu, Y. Yang, Optimum superheat utilization of extraction steam in double reheat ultra-supercritical power plants, Appl. Energy (2015) [Google Scholar]
  11. K. Ozdemir, A. Hepbasli, N. Eskin, Exergoeconomic analysis of a fluidized-bed coal combustor (FBCC) steam power plant, Appl. Thermal Eng. 30 (2010) 1621–1631 [CrossRef] [Google Scholar]
  12. V. Matawala, P. Prabhakaran, Exergoeconomic optimisation of steam power plant, Int. J. Exergy 10 (2012) 209–227 [CrossRef] [Google Scholar]
  13. M.H.K. Manesh, M. Amidpour, H.K.J. Abadi, Comparison of combined cycle and conventional steam power plant through energy level and thermoeconomic analysis, in ASME 2008 International Mechanical Engineering Congress and Exposition, 2008, pp. 819–846 [Google Scholar]
  14. M. Ameri, P. Ahmadi, A. Hamidi, Energy, exergy and exergoeconomic analysis of a steam power plant: a case study, Int. J. Energy Res. 33 (2009) 499-512 [CrossRef] [Google Scholar]
  15. A. Mehrpanahi, S. Hossienalipour, K. Mobini, Investigation of the effects of repowering options on electricity generation cost on Iran steam power plants, Int. J. Sustainable Energy 32 (2013) 229–243 [CrossRef] [Google Scholar]
  16. A. Ganjehkaviri, M.M. Jaafar, S. Hosseini, Optimization and the effect of steam turbine outlet quality on the output power of a combined cycle power plant, Energy Convers. Manag. 89 (2015) 231–243 [CrossRef] [Google Scholar]
  17. L. Galanti, A. Franzoni, A. Traverso, A.F. Massardo, Existing large steam power plant upgraded for hydrogen production, Appl. Energy 88 (2011) 1510–1518 [CrossRef] [Google Scholar]
  18. S. Khanmohammadi, A.R. Azimian, S. Khanmohammadi, Exergy and exergo–economic evaluation of Isfahan steam power plant, Int. J. Exergy 12 (2013) 249–272 [CrossRef] [Google Scholar]
  19. R. Chacartegui, D. Sánchez, J. Becerra, A. Muñoz, T. Sánchez, Performance Analysis of a 565 MW Steam Power Plant, in ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, 2011, pp. 2427–2436 [Google Scholar]
  20. S. Farhad, M. Saffar-Avval, M. Younessi-Sinaki, Efficient design of feedwater heaters network in steam power plants using pinch technology and exergy analysis, Int. J. Energy Res. 32 (2008) 1–11 [Google Scholar]
  21. T.J. Kotas, The exergy method of thermal plant analysis: Elsevier, 2013 [Google Scholar]
  22. A. Bejan, G. Tsatsaronis, M.J. Moran, Thermal Design Optimization: John Wiley & Sons, 1996 [Google Scholar]
  23. I. Dincer, Y.A. Cengel, Energy, entropy and exergy concepts and their roles in thermal engineering, Entropy 3 (2001) 116-149 [CrossRef] [Google Scholar]
  24. M. Ameri, P. Ahmadi, The study of ambient temperature effects on exergy losses of a heat recovery steam generator, in Challenges of Power Engineering and Environment, ed: Springer, 2007, pp. 55–60 [Google Scholar]
  25. M. Kanoglu, I. Dincer, M.A. Rosen, Understanding energy and exergy efficiencies for improved energy management in power plants, Energy Policy 35 (2007) 3967–3978 [CrossRef] [Google Scholar]
  26. CEPCI, Chemical Engineering Plant Cost Index. Chem. Eng., 2014 [Google Scholar]
  27. J.H. Holland,Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence: MIT press, 1992 [Google Scholar]
  28. B. Coppin, Artificial intelligence illuminated: Jones & Bartlett Learning, 2004 [Google Scholar]
  29. M. Mitchell, An introduction to genetic algorithms: MIT press, 1998 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.