Open Access
Issue
Mechanics & Industry
Volume 18, Number 3, 2017
Article Number 313
Number of page(s) 10
DOI https://doi.org/10.1051/meca/2016064
Published online 24 May 2017
  1. R.J. Astley, Numerical methods for noise propagation in moving flows, with application to turbofan engines, Acoust. Sci. Tech. 30 (2009) 227–239 [CrossRef] [Google Scholar]
  2. R. Kechroud, Preconditioning techniques for the solution of the Helmholtz equation by the finite element method, Math. Comput. Simulation 65 (2004) 303–321 [CrossRef] [MathSciNet] [Google Scholar]
  3. G. Gabard, F. Treyssede, M.B. Tahar, A numerical method for vibro-acoustic problems with sheared mean flows, J. Sound Vib. 272 (2004) 991–1011 [CrossRef] [Google Scholar]
  4. M. Taktak, Numerical modelling of the acoustic pressure inside an axisymmetric lined Flow Duct, JSV 37 (2012) 151–160 [Google Scholar]
  5. E. Redon, A.-S. Bonnet-Ben Dhia, J.F. Mercier, S.P. Sari, Non-reecting boundary conditions for acoustic propagation in ducts with acoustic treatment and mean flow, Int. J. Numer. Meth. Eng. 86 (2011) 1360–1378 [CrossRef] [Google Scholar]
  6. N. Balin, F. Casenave, F. Dubois, Boundary Element and Finite Element Coupling for Aeroacoustics Simulations, JCP 294 (2015) 274–296 [CrossRef] [Google Scholar]
  7. A. Sommerfeld, Partial differential equations in physics, Publishers New York, 1949 [Google Scholar]
  8. F. Casenave, A. Ern, G. Sylvand, Coupled BEM-FEM for the convected Helmholtz equation with non-uniform flow in a bounded domain, JCP 257 (2014) 627–644 [CrossRef] [Google Scholar]
  9. T.-W. Wu, L. Lee, A direct boundary integral formulation for acoustic radiation in a subsonic uniform flow, JSV 175 (1994) 51–63 [CrossRef] [Google Scholar]
  10. P. Zhang, T.-W. Wu, L. Lee, A coupled FEM/BEM formulation for acoustic radiation in a subsonic non-uniform flow, JSV 206 (1997) 309–326 [CrossRef] [Google Scholar]
  11. P. Juhl, Non-axisymmetric acoustics propagation in and radiation from lined ducts in a subsonic uniform mean flow, Acustica-acta acustica 86 (2000) 860–869 [Google Scholar]
  12. V.-T. Stephanos et al., An advanced boundary element/fast Fourier transform axisymmetric formulation for acoustic radiation and wave scattering problems, J. Acoust. Soc. Am. 105 (1999) 1517–1526 [CrossRef] [Google Scholar]
  13. P.M. Juhl, An axisymmetric boundary element formulation of sound wave propagation in fluids including viscous and thermal losses, J. Acoust. Soc. Am. 135 (2013) 3409–3418 [Google Scholar]
  14. M. Beldi, B. Barhoumi, A simple and effective axisymmetric convected Helmholtz integral equation, C.R. Mcanique 343 (2015) 457–470 [CrossRef] [Google Scholar]
  15. G.-P. Lennon, Boundary Integral Equation solution to axisymmetric potential flows, Water Resources Res. 15 (1979) 1102–1106 [CrossRef] [Google Scholar]
  16. S. Kirkup, The Boundary Element Method in Acoustics, Journal of Computational Acoustics, 2007 [Google Scholar]
  17. M. Abramowitz, I.-A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972 [Google Scholar]
  18. M. Bonnet, Boundary Integral Equation Methods for Solids and Fluids. John Wiley and Sons, 1999 [Google Scholar]
  19. M. Guiggiani, A. Gigante, A General Algorithm for Multidimensional Cauchy Principal Value Integrals in the boundary Element Method, Appl. Mech. 57 (1990) 906–915 [CrossRef] [MathSciNet] [Google Scholar]
  20. S. Mancini, R.J. Astley, S. Sinayoko, G. Gabard, An integral formulation for wave propagation on weakly non-uniform potential flows, J. Sound Vib. 385 (2016) 184–201 [CrossRef] [Google Scholar]
  21. J.N. Reddy, An Introduction to Finite Element Methods, Second Edition, McGraw Hill Inc. New York, 1993 [Google Scholar]
  22. G. Dhatt, G. Touzot, Presentation of the finite elements method, Maloine S.A. Editeur, Paris, 1989 [Google Scholar]
  23. P. Zhang, T.W. Wu, A hypersingular integral formulation for acoustic radiation in moving flows, J. Sound Vib. 206 (1997) 309–326 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.