Open Access
Mechanics & Industry
Volume 18, Number 4, 2017
Article Number 404
Number of page(s) 11
Published online 28 August 2017
  1. E. Lumpkin, M. Caterina, Mechanisms of sensory transduction in the skin, Nature 445 (2007) 858–865 [CrossRef] [PubMed] [Google Scholar]
  2. S. Choi, K.J. Kuchenbecker, Vibrotactile display: perception, technology and applications, Proc. IEEE 101 (2013) 2093–2104 [CrossRef] [Google Scholar]
  3. M.A. Bueno, B. Lemaire-Semail, M. Amberg, F. Giraud, Pile surface tactile simulation: role of the slider shape, texture close to fingerprints, and the joint stiffness, Tribol. Lett. 59 (2015) 1–12 [CrossRef] [Google Scholar]
  4. S. Asano, S. Okamoto, Y. Matsuura, H. Nagano, Y. Yamada, Vibrotactile display approach that modifies roughness sensations of real textures, in: Proceedings of 2012 RO-MAN, IEEE, Paris, France, 2012, pp. 1001–1006 [EDP Sciences] [Google Scholar]
  5. M. Biet, F. Giraud, B. Lemaire-Semail, Implementation of tactile feedback by modifying the perceived friction, Eur. Phys. J. Appl. Phys. 43 (2008) 123–135 [CrossRef] [EDP Sciences] [Google Scholar]
  6. K.O. Johnson, The roles and functions of cutaneous mechanoreceptors, Curr. Opin. Neurobiol. 11 (2001) 455–461 [CrossRef] [PubMed] [Google Scholar]
  7. T. Maeno, K. Kobayashi, N. Yamazaki, Relationship between the structure of human finger tissue and the location of tactile receptors, JSME Int. J. C: Mech. Syst. Mach. Elem. Manuf. 41 (1998) 94–100 [CrossRef] [Google Scholar]
  8. S.J. Bolanowski, G.A. Gescheider, R.T. Verrillo, C.M. Checkosky, Four channels mediate the mechanical aspects of touch, J. Acoust. Soc. Am. 84 (1988) 1680–1694 [CrossRef] [PubMed] [Google Scholar]
  9. K.O. Johnson, T. Yoshioka, F. Vega-Bermudez, Tactile functions of mechanoreceptive afferents innervating the hand, J. Clin. Neurophysiol. 17 (2000) 539–558 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  10. A. Brisben, S. Hsiao, K. Johnson, Detection of vibration transmitted through an object grasped in the hand, J. Neurophysiol. 81 (1999) 1548–1558 [PubMed] [Google Scholar]
  11. S.J. Bolanowski, G.A. Gescheider, R.T. Verrillo, Hairy skin: psychophysical channels and their physiological substrates, Somatosens. Motor Res. 11 (1994) 279–290 [CrossRef] [Google Scholar]
  12. D. Katz, The world of touch, Psychology Press, New York, USA, 2013 [Google Scholar]
  13. M. Hollins, S.R. Risner, Evidence for the duplex theory of tactile texture perception, Percept. Psychophys. 62 (2000) 695–705 [CrossRef] [PubMed] [Google Scholar]
  14. M. Wiertlewski, J. Lozada, V. Hayward, The spatial spectrum of tangential skin displacement can encode tactual texture, IEEE Trans. Robot. 27 (2011) 461–472 [CrossRef] [EDP Sciences] [Google Scholar]
  15. S.J. Lederman, M.M. Taylor, Fingertip force, surface geometry, and the perception of roughness by active touch, Percept. Psychophys. 12 (1972) 401–408 [CrossRef] [Google Scholar]
  16. S.J. Lederman, J.M. Loomis, D.A. Williams, The role of vibration in the tactual perception of roughness, Percept. Psychophys. 32 (1982) 109–116 [CrossRef] [PubMed] [Google Scholar]
  17. M.A. Srinivasan, R.H. LaMotte, Encoding of shape in the responses of cutaneous mechanoreceptors, in: O. Franzen, J. Westman (eds.), Information processing in the somatosensory system, Macmillan Education UK, London, 1991, pp. 59–69 [CrossRef] [Google Scholar]
  18. H. Culbertson, J. Unwin, B.E. Goodman, K.J. Kuchenbecker, Generating haptic texture models from unconstrained tool-surface interactions, in: Proceedings of World Haptics Conference (WHC), IEEE, Daejeon, South Korea, 2013, pp. 295–300 [Google Scholar]
  19. H. Culbertson, J. Unwin, K.J. Kuchenbecker, Modeling and rendering realistic textures from unconstrained tool-surface interactions, IEEE Trans. Haptics 7 (2014) 381–393 [CrossRef] [PubMed] [Google Scholar]
  20. R. Fagiani, F. Massi, E. Chatelet, Y. Berthier, A. Akay, Tactile perception by friction induced vibrations, Tribol. Int. 44 (2011) 1100–1110 [CrossRef] [Google Scholar]
  21. R. Fagiani, F. Massi, E. Chatelet, J. Costes, Y. Berthier, Contact of a finger on rigid surfaces and textiles: friction coefficient and induced vibrations, Tribol. Lett. 48 (2012) 145–158 [CrossRef] [Google Scholar]
  22. J. Scheibert, S. Leurent, A. Prevost, G. Debregeas, The role of fingerprints in the coding of tactile information probed with a biomimetic sensor, Science 323 (2009) 1503–1506 [CrossRef] [PubMed] [Google Scholar]
  23. R. Klatzky, S. Lederman, Tactile roughness perception with a rigid link interposed between skin and surface, Percept. Psychophys. 61 (1999) 591–607 (in English) [CrossRef] [PubMed] [Google Scholar]
  24. I. Koc, C. Aksu, Tactile sensing of constructional differences in fabrics with a polymeric finger tip, Tribol. Int. 59 (2013) 339–349 [CrossRef] [Google Scholar]
  25. M.A. Bueno, B. Lamy, M. Renner, P. ViallierRaynard, Tribological investigation of textile fabrics, Wear 195 (1996) 192–200 [CrossRef] [Google Scholar]
  26. W. Tang, S. Gel, H. Zhu, X. Cao, N. Li, The influence of normal load and sliding speed on frictional properties of skin, J. Bionic Eng. 5 (2008) 33–38 [CrossRef] [Google Scholar]
  27. J. Asserin, H. Zahouani, P. Humbert, V. Couturaud, D. Mougin, Measurement of the friction coefficient of the human skin in vivo: quantification of the cutaneous smoothness, Colloids Surf. B: Biointerfaces 19 (2000) 1–12 [CrossRef] [Google Scholar]
  28. S. Derler, U. Schrade, L. Gerhardt, Tribology of human skin and mechanical skin equivalents in contact with textiles, Wear 263 (2007) 1112–1116 [CrossRef] [Google Scholar]
  29. R.K. Sivamani, J. Goodman, N.V. Gitis, H.I. Maibach, Friction coefficient of skin in real-time, Skin Res. Technol. 9 (2003) 235–239 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  30. J. van Kuilenburg, M. Masen, E. van der Heide, A review of fingerpad contact mechanics and friction and how this affects tactile perception, Proc. Inst. Mech. Eng. J.: J. Eng. Tribol. 229 (2015) 243–258 [CrossRef] [Google Scholar]
  31. A. Prevost, J. Scheibert, G. Debrégeas, Effect of fingerprints orientation on skin vibrations during tactile exploration of textured surfaces, Commun. Integr. Biol. 2 (2009) 422–424 [CrossRef] [PubMed] [Google Scholar]
  32. N. Lobontiu, Compliant mechanisms: design of flexure hinges, CRC Press, Boca Raton, FL, 2002 [CrossRef] [Google Scholar]
  33. R. Fagiani, F. Massi, E. Chatelet, Y. Berthier, A. Sestieri, Experimental analysis of friction-induced vibrations at the finger contact surface, Proc. Inst. Mech. Eng. J.: J. Eng. Tribol. 224 (2010) 1027–1035 [CrossRef] [Google Scholar]
  34. A. Smith, C. Chapman, M. Deslandes, J. Langlais, M. Thibodeau, Role of friction and tangential force variation in the subjective scaling of tactile roughness, Exp. Brain Res. 144 (2002) 211–223 [CrossRef] [PubMed] [Google Scholar]
  35. J.W. Cooley, J.W. Tukey, An algorithm for the machine calculation of complex Fourier series, Math. Comput. 19 (1965) 297–301 [CrossRef] [MathSciNet] [Google Scholar]
  36. J. Dacleu Ndengue, I. Cesini, J. Faucheu, E. Chatelet, H. Zahouani, D. Delafosse, F. Massi, Tactile perception and friction induced vibrations: discrimination of similarly patterned wood-like surfaces, IEEE Trans. Haptics, 2017, accepted for publication, doi:10.1109/TOH.2016.2643662 [Google Scholar]
  37. B. Delhaye, V. Hayward, P. Lefevre, J. Thonnard, Texture-induced vibrations in the forearm during tactile exploration, Front. Behav. Neurosci. 6 (2012) 60–69 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.