Open Access
Issue
Mechanics & Industry
Volume 18, Number 4, 2017
Article Number 414
Number of page(s) 22
DOI https://doi.org/10.1051/meca/2017012
Published online 28 August 2017
  1. G.W. Housner, L. Bergman, T. Caughey, A. Chassiakos, R. Claus, S. Masri, R. Skelton, T. Soong, B. Spencer, J.T. Yao, Structural control: past, present, and future, J. Eng. Mech. 123 (1997) 897–971 [CrossRef] [Google Scholar]
  2. S. Naranjo, L. Hong-Nan, L. Gang, Simple method for pushover curves of asymmetric structure with displacement-dependent passive energy dissipation devices, Summer Research Program in Marine Science and Engineering, Clarkson Univ. (USA) and Dalian Univ. of Technology (China), Dalian, China, 2006 [Google Scholar]
  3. RubberDesign: Rubber shock mountings, 2015, http://www.rubberdesign.nl/pdfs/downloads/shock-mountings/documentation-rubber-shock-mountings.aspx (online, accessed on: 2017/07/01) [Google Scholar]
  4. M.M. Shokrieh, D. Rezaei, Analysis and optimization of a composite leaf spring, Compos. Struct. 60 (2003) 317–325 [CrossRef] [Google Scholar]
  5. E. Mahdi, O. Alkoles, A. Hamouda, B. Sahari, R. Yonus, G. Goudah, Light composite elliptic springs for vehicle suspension, Compos. Struct. 75 (2006) 24–28 [CrossRef] [Google Scholar]
  6. S. Kishiki, Y. Ohkawara, S. Yamada, A. Wada, Experimental evaluation of cyclic deformation capacity of U-shaped steel dampers for base-isolated structures, J. Struct. Construct. Eng., 73 (2008) 333–340 [CrossRef] [Google Scholar]
  7. S.I. Kwon, S.H. Oh, S.H. Lee, An analytical study on the shape development of ushaped steel damper for seismic isolation system, J. Korean Soc. Steel Construct. 22 (2010) 43–53 [Google Scholar]
  8. P. Tse, K. Lau, W. Wong, S. Reid, Spring stiffnesses of composite circular springs with extended flat contact surfaces under unidirectional line-loading and surface-loading configurations, Compos. Struct. 55 (2002) 367–386 [CrossRef] [Google Scholar]
  9. P. Tse, C. Lung, Large deflections of elastic composite circular springs under uniaxial tension, Int. J. Non-linear Mech. 35 (2000) 293–307 [CrossRef] [Google Scholar]
  10. S.H. Oh, S.H. Song, S.H. Lee, H.J. Kim, Experimental study of seismic performance of base-isolated frames with U-shaped hysteretic energy-dissipating devices, Eng. Struct. 56 (2013) 2014–2027 [CrossRef] [Google Scholar]
  11. S.H. Oh, S.H. Song, S.H. Lee, H.J. Kim, Seismic response of base isolating systems with U-shaped hysteretic dampers, Int. J. Steel Struct. 12 (2012) 285–298 [CrossRef] [Google Scholar]
  12. W. Wong, P. Tse, K. Lau, Y. Ng, Spring constant of fibre-reinforced plastics circular springs embedded with nickel-titanium alloy wire, Compos. Struct. 65 (2004) 319–328 [CrossRef] [Google Scholar]
  13. A. Treviso, B. Van Genechten, D. Mundo, M. Tournour, Damping in composite materials: properties and models, Compos. B: Eng. 78 (2015) 144–152 [CrossRef] [Google Scholar]
  14. M. Ganapathi, B. Patel, P. Boisse, O. Polit, Flexural loss factors of sandwich and laminated composite beams using linear and nonlinear dynamic analysis, Compos. B: Eng. 30 (1999) 245–256 [CrossRef] [EDP Sciences] [Google Scholar]
  15. M. Hao, M.D. Rao, Vibration and damping analysis of a sandwich beam containing a viscoelastic constraining layer, J. Compos. Mater. 39 (2005) 1621–1643 [CrossRef] [Google Scholar]
  16. C.A. Verbaan, G.W. Peters, M. Steinbuch, The advantage of linear viscoelastic material behavior in passive damper design-with application in broad-banded resonance dampers for industrial high-precision motion stages, J. Sound Vib. 386 (2017) 242–250 [CrossRef] [Google Scholar]
  17. A. De Lima, B. Guaraldo-Neto, T. Sales, D. Rade, A time-domain modeling of systems containing viscoelastic materials and shape memory alloys as applied to the problem of vibration attenuation, Eng. Struct. 68 (2014) 85–95 [CrossRef] [EDP Sciences] [Google Scholar]
  18. Z.D. Xu, F.H. Xu, X. Chen, Vibration suppression on a platform by using vibration isolation and mitigation devices, Nonlinear Dyn. 83 (2016) 1341–1353 [CrossRef] [Google Scholar]
  19. N. Choudhary, D. Kaur, Vibration damping materials and their applications in nano/micro-electro-mechanical systems: a review, J. Nanosci. Nanotechnol. 15 (2015) 1907–1924 [CrossRef] [PubMed] [Google Scholar]
  20. W. Arshad, Static and buckling analyses of curved metallic and composite beams using hierarchical fem, Ph.D. thesis, Concordia University, 2005 [Google Scholar]
  21. A.P. Boresi, R.J. Schmidt, O.M. Sidebottom, Advanced mechanics of materials, vol. 5, Wiley, New York, 1993 [Google Scholar]
  22. S. Timoshenko, Strength of materials, in: Advanced theory and problems, Part II, D. Van Nostrand Company, Inc., New York, 1940 [Google Scholar]
  23. O. Elsherif, Lateral buckling of horizontally curved beams, Ph.D. thesis, Polytechnic Institute of New York University, 2009 [Google Scholar]
  24. C. Lewitzke, P. Lee, Application of elastomeric components for noise and vibration isolation in the automotive industry, Tech. Rep., SAE Technical Paper, 2001 [Google Scholar]
  25. J.H. Wu, C.H. Li, H.T. Chiu, Z.J. Shong, Dynamic properties of rubber vibration isolators and antivibration performance of ethylene–propylene–diene monomer/nylon 6 blend systems, J. Appl. Polym. Sci. 108 (2008) 4114–4121 [CrossRef] [Google Scholar]
  26. M.C. Boyce, E.M. Arruda, Constitutive models of rubber elasticity: a review, Rubber Chem. Technol. 73 (2000) 504–523 [CrossRef] [Google Scholar]
  27. R. Ogden, Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids, Rubber Chem. Technol. 46 (1973) 398–416 [CrossRef] [Google Scholar]
  28. R. Ogden, G. Saccomandi, I. Sgura, Fitting hyperelastic models to experimental data, Comput. Mech. 34 (2004) 484–502 [CrossRef] [Google Scholar]
  29. P. Martins, R. Natal Jorge, A. Ferreira, A comparative study of several material models for prediction of hyperelastic properties: application to silicone-rubber and soft tissues, Strain 42 (2006) 135–147 [CrossRef] [EDP Sciences] [Google Scholar]
  30. G. Marckmann, E. Verron, Comparison of hyperelastic models for rubber-like materials, Rubber Chem. Technol. 79 (2006) 835–858 [CrossRef] [Google Scholar]
  31. L. Yang, V. Shim, C. Lim, A visco-hyperelastic approach to modelling the constitutive behaviour of rubber, Int. J. Impact Eng. 24 (2000) 545–560 [CrossRef] [Google Scholar]
  32. X. Zhang, S. Yang, L. Chen, Finite element simulation of viscoelastic damping materials, in: Advanced Intelligent Computing Theories and Applications. With Aspects of Contemporary Intelligent Computing Techniques, Springer, 2007, pp. 1234–1241 [CrossRef] [Google Scholar]
  33. F. Tajirian, J. Kelly, I. Aiken, W. Veljovich, Elastomeric bearings for three-dimensional seismic isolation, in: 1990 ASME PVP Conference, Nashville, TN, USA, 1990 [Google Scholar]
  34. CEN, Eurocode 8: Design provisions of structures for earthquake resistance, Part 2: Bridges, en1998-2: 2005, European Committee for Standardization, Brussels, 2005 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.