Open Access
Mechanics & Industry
Volume 18, Number 4, 2017
Article Number 411
Number of page(s) 7
Published online 28 August 2017
  1. R. Hashemi, G. Faraji, K. Abrinia, A.F. Dizaji, Application of the hydroforming strain- and stress-limit diagrams to predict necking in metal bellows forming process, Int. J. Adv. Manuf. Technol. 46 (2010) 551–561 [CrossRef] [Google Scholar]
  2. N. Asnafi, A. Skogsgårdh, Theoretical and experimental analysis of stroke-controlled tube hydroforming, Mater. Sci. Eng.: A 279 (2000) 95–110 [CrossRef] [Google Scholar]
  3. L.-P. Lei, J. Kim, B.-S. Kang, Bursting failure prediction in tube hydroforming processes by using rigid-plastic FEM combined with ductile fracture criterion, Int. J. Mech. Sci. 44 (2002) 1411–1428 [CrossRef] [Google Scholar]
  4. C. Zhang, L. Leotoing, D. Guines, E. Ragneau, Theoretical and numerical study of strain rate influence on AA5083 formability, J. Mater. Process. Technol. 209 (2009) 3849–3858 [CrossRef] [Google Scholar]
  5. A. Rezaee-Bazzaz, H. Noori, R. Mahmudi, Calculation of forming limit diagrams using Hill’s 1993 yield criterion, Int. J. Mech. Sci. 53 (2011) 262–270 [CrossRef] [Google Scholar]
  6. K. Wang, J.E. Carsley, L. Zhang, T.B. Stoughton, J. Li, B.E. Carlson, Forming limits of an age hardenable aluminum sheet after pre-straining and annealing, Int. J. Mech. Sci. 82 (2014) 13–24 [CrossRef] [Google Scholar]
  7. W. Lee, X. Wen, A dislocation-based model of forming limit prediction in the biaxial stretching of sheet metals, Int. J. Mech. Sci. 48 (2006) 134–144 [CrossRef] [Google Scholar]
  8. R. Uppaluri, N.V. Reddy, P. Dixit, An analytical approach for the prediction of forming limit curves subjected to combined strain paths, Int. J. Mech. Sci. 53 (2011) 365–373 [CrossRef] [Google Scholar]
  9. S.P. Keeler, W.A. Backofen, Plastic instability and fracture in sheets stretched over rigid punches, ASM Trans. Q. 56 (1963) 25–48 [Google Scholar]
  10. J. Kim, B. Kang, S. Hwang, H. Park, Numerical prediction of bursting failure in tube hydroforming by the FEM considering plastic anisotropy, J. Mater. Process. Technol. 153 (2004) 544–549 [CrossRef] [Google Scholar]
  11. J. Kim, S.-W. Kim, W.-J. Song, B.-S. Kang, Analytical approach to bursting in tube hydroforming using diffuse plastic instability, Int. J. Mech. Sci. 46 (2004) 1535–1547 [CrossRef] [Google Scholar]
  12. J. Kim, S.-W. Kim, W.-J. Song, B.-S. Kang, Analytical and numerical approach to prediction of forming limit in tube hydroforming, Int. J. Mech. Sci. 47 (2005) 1023–1037 [CrossRef] [Google Scholar]
  13. Y.-M. Hwang, Y.-K. Lin, H.-C. Chuang, Forming limit diagrams of tubular materials by bulge tests, J. Mater. Process. Technol. 209 (2009) 5024–5034 [CrossRef] [Google Scholar]
  14. X. Chen, Z. Lin, Z. Yu, X. Chen, S. Li, Prediction of forming limit diagram for seamed tube hydroforming based on thickness gradient criterion, in: The 8th International Conference and Workshop on Numerical Simulation of 3D Seet Metal Forming Processes (NUMISHEET 2011), 2011, pp. 653–660 [EDP Sciences] [Google Scholar]
  15. S.H. Seyedkashi, V. Panahizadeh, H. Xu, S. Kim, Y.H. Moon, Process analysis of two-layered tube hydroforming with analytical and experimental verification, J. Mech. Sci. Technol. 27 (2013) 169–175 [CrossRef] [Google Scholar]
  16. R. Hill, A theory of the yielding and plastic flow of anisotropic metals, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 193 (1948) 281–297 [CrossRef] [Google Scholar]
  17. A. Pambhar, K. Narasimhan, Prediction of stress and strain based forming limit diagram during tube hydroforming process, Trans. Indian Inst. Metals 66 (2013) 665–669 [CrossRef] [Google Scholar]
  18. R.S. Korouyeh, H.M. Naeini, G. Liaghat, Forming limit diagram prediction of tailor-welded blank using experimental and numerical methods, J. Mater. Eng. Perform. 21 (2012) 2053–2061. [CrossRef] [Google Scholar]
  19. A. Menhaj, M. Abbasi, M. Sedighi, M. Ketabchi, A new concept in obtaining a forming limit diagram of tailor welded blanks, J. Strain Anal. Eng. Des. 46 (2011) 740–748 [CrossRef] [Google Scholar]
  20. S.K. Paul, G. Manikandan, R.K. Verma, Prediction of entire forming limit diagram from simple tensile material properties, J. Strain Anal. Eng. Des. 48 (2013) 386–394 [CrossRef] [Google Scholar]
  21. S.K. Paul, Theoretical analysis of strain- and stress-based forming limit diagrams, J. Strain Anal. Eng. Des. 48 (2013) 177–188 [CrossRef] [EDP Sciences] [Google Scholar]
  22. N. Hedayati, R. Madoliat, R. Hashemi, Strain measurement and determining coefficient of plastic anisotropy using digital image correlation (DIC), Mech. Ind. 18 (2017) 311–320 [CrossRef] [EDP Sciences] [Google Scholar]
  23. R. Hashemi, K. Abrinia, A. Assempour, H. Khakpour Nejadkhaki, A. Shahbazi Mastanabad, Forming limit diagram of tubular hydroformed parts considering the through-thickness compressive normal stress, Proc. Inst. Mech. Eng. L: J. Mater. Des. Appl. 230 (2016) 332–343 [Google Scholar]
  24. S.J. Hashemi, H. Moslemi Naeini, G.H. Liaghat, H. Deilami Azodi, A. Nemati Faghir, Prediction of forming limit curve using ductile fracture criteria in hydroforming of aluminum tubes, J. Appl. Comput. Mech. 25 (2014) 11–17 (in Persian) [Google Scholar]
  25. H. Moslemi Naeini, S. Hashemi, G.H. Liaghat, M. Mohammadi, H. Deilami Azodi, Analytical prediction of limit strains and limit stresses in hydroforming of anisotropic aluminum tubes, Modares Mech. Eng. 14 (2014) 133–140 (in Persian) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.