Free Access
Issue
Mechanics & Industry
Volume 18, Number 4, 2017
Article Number 412
Number of page(s) 10
DOI https://doi.org/10.1051/meca/2017007
Published online 28 August 2017
  1. P. Luke, A.V. Olver, A study of churning losses in dip-lubricated spur gears, Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 213 (1999) 337–346 [CrossRef] [Google Scholar]
  2. A.S. Kolekar, A.V. Olver, A.E. Sworski, F.E. Lockwood, The efficiency of a hypoid axle – a thermally coupled lubrication model, Tribol. Int. 59 (2013) 203–209 [CrossRef] [EDP Sciences] [Google Scholar]
  3. S.L. Soo, N.J. Princeton, Laminar flow over an enclosed rotating disk, Trans. ASME 80 (1958) 287–296 [Google Scholar]
  4. J.W. Daily, R.E. Nece, Chamber dimension effects on induced flow and frictional resistance of enclosed rotating disks, J. Basic Eng. 82 (1960) 217–230 [CrossRef] [Google Scholar]
  5. R.W. Mann, C.H. Marston, Friction drag on bladed disks in housings as a function of Reynolds number, axial and radial clearance, and blade aspect ratio and solidity, J. Basic Eng. 83 (1961) 719–723 [CrossRef] [Google Scholar]
  6. A.S. Terekhov, Hydraulic losses in gearboxes with oil immersion, Vestn. Mashinostroeniya 55 (1975) 13–17 [Google Scholar]
  7. E. Lauster, M. Boos, Zum wärmehaushalt mechanischer schaltgetriebe für nutzfahrzeuge, VDI-Berichte (1983) 45–55 [Google Scholar]
  8. R. Boness, Churning losses of discs and gears running partially submerged in oil, in: Proc. ASME Int. Power Trans. Gearing Conf., vol. 1, 1989, pp. 255–359 [Google Scholar]
  9. P. Walter, Anwendungsgrenzen fuer die tauchschmierung von zahnradgetrieben, plansch- und quetschverluste bei tauchschmierung, Forschungsheft, Forschungsvereinigung Antriebstechnik, 1982 [Google Scholar]
  10. W. Mauz, Hydraulische Verluste von Stirnradgetrieben bei Umfangsgeschwindigkeiten bis 60 m/s, Berichte des Institutes für Maschinenkonstruktion und Getriebebau, IMK, 1987 [Google Scholar]
  11. B. Höhn, K. Michaelis, T. Vollmer, American Gear Manufacturers Association, Thermal rating of gear drives balance between power loss and heat dissipation. Technical papers, American Gear Manufacturers Association, 1996 [Google Scholar]
  12. B. Höhn, K. Michaelis, H. Otto, Influence on no-load gear losses, in: Proceedings of the Ecotrib 2011 Conference, Vienna, Austria, vol. 2, 2011, pp. 639–644 [Google Scholar]
  13. S. Seetharaman, A. Kahraman, M.D. Moorhead, T.T. Petry-Johnson, Oil churning power losses of a gear pair: experiments and model validation, J. Tribol. 131 (2009) 022202 [CrossRef] [Google Scholar]
  14. H. Arisawa, M. Nishimura, H. Imai, T. Goi, Computational fluid dynamics simulations and experiments for reduction of oil churning loss and windage loss in aeroengine transmission gears, J. Eng. Gas Turbines Power 136 (2014) 092604 [CrossRef] [Google Scholar]
  15. A.S. Kolekar, A.V. Olver, A.E. Sworski, F.E. Lockwood, Windage and churning effects in dipped lubrication, J. Tribol. 136 (2014) 021801 [CrossRef] [Google Scholar]
  16. C. Changenet, P. Velex, Housing influence on churning losses in geared transmissions, J. Mech. Des. 130 (2008) 0626031–0626036 [CrossRef] [Google Scholar]
  17. C. Changenet, G. Leprince, F. Ville, P. Velex, A note on flow regimes and churning loss modeling, J. Mech. Des. 133 (2011) 121009 [CrossRef] [Google Scholar]
  18. P.M.T. Marques, C.M.C.G. Fernandes, R.C. Martins, J.H.O. Seabra, Efficiency of a gearbox lubricated with wind turbine gear oils, Tribol. Int. 71 (2014) 7–16 [CrossRef] [Google Scholar]
  19. F. Concli, C. Gorla, A. Della Torre, G. Montenegro, Churning power losses of ordinary gears: a new approach based on the internal fluid dynamics simulations, Lubr. Sci. 27 (2015) 313–326 [CrossRef] [Google Scholar]
  20. F. Concli, A.D. Torre, C. Gorla, G. Montenegro, A new integrated approach for the prediction of the load independent power losses of gears: development of a mesh-handling algorithm to reduce the CFD simulation time, Adv. Tribol. 2016 (2016) Article ID 2957151 [CrossRef] [Google Scholar]
  21. F. Concli, C. Gorla, K. Stahl, B.-R. Höhn, K. Michaelis, H. Schultheiß, J.-P. Stemplinger, Load independent power losses of ordinary gears: numerical and experimental analysis, in: Proceedings of 5th World Tribology Congress, WTC 2013, Torino, Italy, vol. 2, 2013, pp. 1243–1246 [Google Scholar]
  22. ISO/TR 14179-1: Gears – thermal capacity; part 1: rating gear drives with thermal equilibrium at 95 °C sump temperature, 2001, p. 38 [Google Scholar]
  23. ISO/TR 14179-2: Gears – thermal capacity; part 2: thermal load-carrying capacity, 2001, p. 42 [Google Scholar]
  24. S.I. Jeon, Improving efficiency in drive lines: an experimental study on churning losses in hypoid axle, PhD thesis, Imperial College, London, 2010 [Google Scholar]
  25. G. LePrince, C. Changenet, F. Ville, P. Velex, C. Dufau, F. Jarnias, Influence of aerated lubricants on gear churning losses – an engineering model, Tribol. Trans. 54 (2011) 929–938 [CrossRef] [Google Scholar]
  26. T. Misic, M. Najdanovic-Lukic, L. Nesic, Dimensional analysis in physics and the Buckingham theorem, Eur. J. Phys. 31 (2010) 893 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.