Open Access
Mechanics & Industry
Volume 18, Number 5, 2017
Article Number 504
Number of page(s) 10
Published online 25 August 2017
  1. N. Jalili, K. Laxminarayana, A review of atomic force microscopy imaging systems: application to molecular and biological sciences, Int. J. Mech. 14 (2004) 907–945 [Google Scholar]
  2. J. Carlos, J.C. Gomez, R. Garcia, Determination and simulation of nanoscale energy dissipation processes in amplitude modulation AFM, Ultramicroscopy 110 (2010) 626–633 [CrossRef] [PubMed] [Google Scholar]
  3. W. Zhang, G.A. Stack, Y. Chen, Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM, Colloids Surf. B 82 (2011) 316–324 [CrossRef] [Google Scholar]
  4. S.H. Al-Harthi, K.P. Revathy, A.K. George, M.E. Elzain, A.T. Al-Hinai, A. Mesli, N.V. Unnikrishnan, Self-assembly of TiO2 nanoparticles on native oxide terminated silicon surface, Colloids Surf. A 370 (2010) 20–27 [CrossRef] [Google Scholar]
  5. D. Sarid, D. Iams, V. Weissenberger, L.S. Bell, Compact scanning-force microscope using a laser diode. Opt. Lett. 13 (1988) 1057–1059 [CrossRef] [PubMed] [Google Scholar]
  6. M. Tortonese, H. Yamada, R.C. Barret, C.F. Quate, The proceedings of transducers 1991, IEEE, Pennington, 1991, pp. 448–451 [EDP Sciences] [Google Scholar]
  7. S.C. Minne, S.R. Manalis, C.F. Quate, Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators, Appl. Phys. Lett. 67 (1995) 3918–3920 [CrossRef] [Google Scholar]
  8. T. Itoh, T. Suga, Scanning force microscopy using a piezoelectric microcantilever, J. Vacuum Sci. Technol. B 12 (1994) 1581 [CrossRef] [Google Scholar]
  9. R.P. Ried, H.J. Mamin, B.D. Terris, L.S. Fan, 2-N/m piezoresistive atomic-force microscope cantilevers with INCISIVE tips, IEEE J. Microelectromech. Syst. 6 (1997) 294–302 [CrossRef] [Google Scholar]
  10. B. Rogers, L. Manning, T. Sulchek, J.D. Adams, Improving tapping mode atomic force microscopy with piezoelectric cantilevers, Ultramicroscopy 100 (2003) 267–276 [CrossRef] [Google Scholar]
  11. H.C. Song, H.C. Kim, C.Y. Kang, H.J. Kim, S.J. Yoon, D.Y. Jeong, Multilayer piezoelectric energy scavenger for large current generation, J. Electroceram. 23 (2009) 301–304 [CrossRef] [Google Scholar]
  12. D. Zhu, A. Almusallam, S.P. Beeby, J. Tudor, N.R. Harris, A bimorph multi-layer piezoelectric vibration energy harvester, in: Proceedings of Power MEMS, Belgium, 2010 [Google Scholar]
  13. D. Zhu, S. Beeby, J. Tudor, N. White, N. Harris, Improving output power of piezoelectric energy harvesters using multilayer structures, Proc. Eng. 25 (2011) 199–202 [CrossRef] [Google Scholar]
  14. J. Vázquez, M.A. Rivera, J. Hernando, J.L. Sánchez-Rojas, Dynamic response of low aspect ratio piezoelectric microcantilevers actuated in different liquid environments, J. Micromech. Microeng. 45 (2009) 136–144 [Google Scholar]
  15. R.C. Tung, A. Jana, A. Raman, Hydrodynamic loading of microcantilevers oscillating near rigid walls, J. Appl. Phys. 104 (2008) 114905 [CrossRef] [Google Scholar]
  16. K.H. Baek, Y. Seo, Y.S. Bang, D. Lee, J.M. Kim, Y.K. Kim, Fabrication and characterization of piezoelectric micro-cantilever operated in liquid environment for ultrasound energy source applications, Microsyst. Technol. 17 (2011) 1319–1327 [CrossRef] [Google Scholar]
  17. D. Kiracofe, A. Raman, Microcantilever dynamics in liquid environment dynamic atomic force microscopy when using higher-order cantilever eigenmodes, J. Appl. Phys. 108 (2010) 034320 [CrossRef] [Google Scholar]
  18. A. Salehi-Khojin, S. Bashash, N. Jalili, Modeling and experimental vibration analysis of nanomechanical cantilever active probes, Micromech. Microeng. 18 (2007) 085008 [Google Scholar]
  19. S.N. Mahmoodi, N. Jalili, Non-linear vibrations and frequency response analysis of piezoelectrically driven microcantilevers, Int. J. Non-Linear Mech. 4 (2007) 577–587 [Google Scholar]
  20. A.H. Korayem, M.H. Korayem, R. Ghaderi, FEM analysis of the vibrational motion of oblique piezoelectric microcantilever in the vicinity of a sample surface in liquid, Prec. Eng. 42 (2015) 208–217 [Google Scholar]
  21. R. McCarty, S.N. Mahmoodi, Dynamic multimode analysis of non-linear piezoelectric microcantilever probe in bistable region of tapping mode atomic force microscopy, Int. J. Non-Linear Mech. 74 (2015) 25–37 [CrossRef] [Google Scholar]
  22. H. Qiu, D. Xiao, D. Feili, X. Wu, H. Seidel, Hydrodynamic analysis of piezoelectric microcantilevers vibrating in viscous compressible gases, Sens. Actuators A 238 (2016) 299–306 [CrossRef] [Google Scholar]
  23. S.N. Mahmoodi, M.F. Daqaq, N. Jalili, On the nonlinear-flexural response of piezoelectrically driven microcantilever sensors, Sens. Actuators A 153 (2009) 171–179 [CrossRef] [Google Scholar]
  24. R. Asadifar, R. Tilaki, M. Ranjbar, M. Dini, A. Arab, M. Ghajavand, O. Moradi, E.V. Mohaghadam, Introduction to nanotechnology: measurement and characterization, Secretariat of Nanotechnology Initiative Staff, Tehran, 2006 [Google Scholar]
  25. K. Wolf, O. Gottlieb, Nonlinear dynamics of a noncontacting atomic force microscope cantilever actuated by a piezoelectric layer, J. Appl. Phys. 91 (2002) 4701–4709 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.