Open Access
Issue |
Mechanics & Industry
Volume 18, Number 5, 2017
|
|
---|---|---|
Article Number | 505 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/meca/2017018 | |
Published online | 04 September 2017 |
- J.M. Tomas, M.J.B.M. Pourquie, H.J.J. Jonker, The influence of an obstacle on flow and pollutant dispersion in neutral and stable boundary layers, J. Atmos. Environ. 113 (2015) 236–246 [CrossRef] [Google Scholar]
- N.E. Mejia, Etude numérique du cisaillement des géomatériaux granulaires cohésifs: passage micro-macro, microstructure, et application à la modélisation de glissements de terrain, Thèse, Université Montpellier II, France, 2008 [Google Scholar]
- D.J. Korteweg, G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag. 39 (1895) 422–443 [CrossRef] [MathSciNet] [Google Scholar]
- WAMDI Group, The WAM model – a third generation ocean wave prediction model, J. Phys. Oceanogr. 18 (1988) 1775–1810 [CrossRef] [Google Scholar]
- G.J. Komen, L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, P.A.E.M. Janssen, Dynamics and modelling of ocean waves, Cambridge University Press, New York, 1994, pp. 275–296 [Google Scholar]
- A. Ouahsine, H. Smaoui, K. Meftah, P. Sergent, F. Sabatier, Numerical study of coastal sandbar migration by hydro-morphodynamical coupling, Environ. Fluid Mech. 13 (2012) 169–187 [CrossRef] [Google Scholar]
- L.C. Van Rijn et al., Transport of fine sands by currents and waves, J. Waterways Port Coastal Ocean Eng. ASCE 19 (1995) 1181–1189 [Google Scholar]
- J.Y. Vinçont, S. Simoens, M. Ayrault, M. Wallace, Passive scalar dispersion in a turbulent boundary layer from a line source at the wall and downstream of an obstacle, J. Fluid Mech. 424 (2000) 127–167 [CrossRef] [Google Scholar]
- R.N. Zare, My life with LIF: a personal account of developing laser-induced fluorescence, Annu. Rev. Anal. Chem. 5 (2012) 1–14 [Google Scholar]
- J. Frisvad, N. Christensen, H. Jensen, Computing the scattering properties of participating media using Lorenz-Mie theory, ACM Trans. Graph. 26 (2007) 51–60 [CrossRef] [Google Scholar]
- R. Rossi, G. Iaccarino, Numerical simulation of scalar dispersion downstream of a square obstacle using gradient-transport type models, J. Atmos. Environ. 43 (2009) 2518–2531 [CrossRef] [Google Scholar]
- H.K. Versteeg, W. Malalasekera, An introduction to computational fluid dynamics: the finite volume method, Pearson Education, England, 2007, pp. 30, 43–49 [Google Scholar]
- A. Amahmouj, E.M. Chaabelasri, N. Salhi, Computations of pollutant dispersion in coastal waters of Tangier's bay, Int. Rev. Model. Simulat. 5 (2012) 1588–1595 [Google Scholar]
- T. Watanabe, Y. Sakai, K. Nagata, Y. Ito, Large eddy simulation study of turbulent kinetic energy and scalar variance budgets and turbulent/non turbulent interface in planer jets, J. Fluid Dyn. Res. 84 (2016) 021407 [CrossRef] [Google Scholar]
- F.M. White, Viscous fluid flow, 3rd ed., McGraw-Hill, 2006, pp. 31, 43–49 [Google Scholar]
- R. Eymard, T.R. Gallouët, R. Herbin, The finite volume method, in: Handbook of Numerical Analysis, Vol. 7, North-Holland, Amsterdam 2000, pp. 713–1020 [Google Scholar]
- M. Hazewinkel (ed.), Seidel method, Encyclopedia of Mathematics, Springer, 2001, pp. 23, 517–527 [Google Scholar]
- D.M. David, M.R. Stephen, An embedded boundary Cartesian grid scheme for viscous flows using a new viscous wall boundary condition treatment, Presented at the AIAA 42nd Aerospace Sciences Meeting, AIAA Paper 0581, 2004 [Google Scholar]
- D.S. Jang, R. Jetli, S. Acharya, Comparison of the piso, simpler and simplec algorithm for the treatment of the pressure velocity coupling in steady flow problems, J. Numer. Heat Transfer 10 (1986) 209–228 [Google Scholar]
- C. Hirsch, Numerical computation of internal and external flows, Energy Convers. Manage. 44 (1999) 381–388 [Google Scholar]
- J.F. Straube, E.F.P. Burnett, Driving rain and masonry veneer, Water leakage through building facades, ASTM STP 1314, 2011 [Google Scholar]
- H.J. Hussein, R.J. Martinuzzi, Energy balance for turbulent flow around a surface mounted cube placed in a channel, Phys. Fluids 8 (1996) 764–780 [CrossRef] [Google Scholar]
- D. Spalding, A single formula for the law of the wall, J. Appl. Mech. 28 (1961) 455–458 [CrossRef] [Google Scholar]
- H. Smaoui, A. Ouahsine, Extension of the skin shear stress Li's relationship to the flat bed, Environ. Fluid Mech. 12 (2012) 201–207 [CrossRef] [Google Scholar]
- P.R. Spalart, Direct simulation of a turbulent boundary layer up to Rθ = 1410, J. Fluid Mech. 187 (1988) 61 [CrossRef] [Google Scholar]
- K. Cartwright, Determining the effective or RMS voltage of various waveforms without calculus, Technol. Interface 8 (2007) 1–20 [EDP Sciences] [Google Scholar]
- S.B. Pope, Turbulent flows, Cambridge University Press, UK, 2000 [CrossRef] [Google Scholar]
- G.G. Katul, D. Li, M. Chameki, E. Bou-Zeid, Mean scalar concentration profile in a sheared and thermally stratified atmospheric surface layer, Phys. Rev. 87 (2013) 023004 [Google Scholar]
- D.C. Wilcox, Formulation of the K-ω turbulence model revisited, AIAA J. 46 (2008) 2823–2838 [Google Scholar]
- B. Andersson, R. Andersson, Computational fluid dynamics for engineers, 1st ed., Cambridge University Press, New York, 2012, p. 97 [Google Scholar]
- W.F.F. Riley, L.D. Sturges, D.H. Morris, Mechanics of materials, 5th ed., John Wiley & Sons, New York, 1998, 720 pp. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.