Open Access
Issue
Mechanics & Industry
Volume 18, Number 5, 2017
Article Number 502
Number of page(s) 21
DOI https://doi.org/10.1051/meca/2017021
Published online 25 August 2017
  1. Y.G. Park, M.Y. Ha, H.S. Yoon, Study on natural convection in a cold square enclosure with a pair of hot horizontal cylinders positioned at different vertical locations, Int. J. Heat Mass Transf. 65 (2013) 696–712 [CrossRef] [Google Scholar]
  2. F. Garoosi, G. Bagheri, F. Talebi, Numerical simulation of natural convection of nanofluids in a square cavity with several pairs of heaters and coolers (HACs) inside, Int. J. Heat Mass Transf. 67 (2013) 362–376 [CrossRef] [Google Scholar]
  3. H.N. Dixit, V. Babu, Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method, Int. J. Heat Mass Transf. 49 (2006) 727–739 [CrossRef] [Google Scholar]
  4. C.J. Ho, W. Chang, C. Wang, Natural convection between two horizontal cylinders in an adiabatic circular enclosure, J. Heat Transf. 115 (1993) 158–165 [CrossRef] [Google Scholar]
  5. C.J. Ho, Y.T. Cheng, C.C. Wang, Natural convection between two horizontal cylinders inside a circular enclosure subjected to external convection, Int. J. Heat Fluid Flow 15 (1994) 299–306 [CrossRef] [Google Scholar]
  6. M. Corcione, Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls, Int. J. Therm. Sci. 49 (2010) 1536–1546 [CrossRef] [Google Scholar]
  7. M. El Abdallaoui, M. Hasnaoui, A. Amahmid, Numerical simulation of natural convection between a decentered triangular heating cylinder and a square outer cylinder filled with a pure fluid or a nanofluid using the lattice Boltzmann method, Powder Technol. 277 (2015) 193–205 [CrossRef] [Google Scholar]
  8. K. Khanafer, S.M. Aithal, Laminar mixed convection flow and heat transfer characteristics in a lid driven cavity with a circular cylinder, Int. J. Heat Mass Transf. 66 (2013) 200–209 [CrossRef] [Google Scholar]
  9. A.W. Islam, M.A.R. Sharif, E.S. Carlson, Mixed convection in a lid driven square cavity with an isothermally heated square blockage inside, Int. J. Heat Mass Transf. 55 (2012) 5244–5255 [CrossRef] [Google Scholar]
  10. F. Garoosi, S. Garoosi, K. Hooman, Numerical simulation of natural convection and mixed convection of the nanofluid in a square cavity using Buongiorno model, Powder Technol. 268 (2014) 279–292 [CrossRef] [Google Scholar]
  11. Q.-H. Deng, Fluid flow and heat transfer characteristics of natural convection in square cavities due to discrete source-sink pairs, Int. J. Heat Mass Transf. 51 (2008) 5949–5957 [CrossRef] [Google Scholar]
  12. H.F. Oztop, I. Dagtekin, Mixed convection in two-sided lid-driven differentially heated square cavity, Int. J. Heat Mass Transf. 47 (2004) 1761–1769 [CrossRef] [Google Scholar]
  13. F. Talebi, A.H. Mahmoudi, M. Shahi, Numerical study of mixed convection flows in a square lid-driven cavity utilizing nanofluid, Int. Commun. Heat Mass Transf. 37 (2010) 79–90 [CrossRef] [Google Scholar]
  14. H.F. Oztop, I. Dagtekin, A. Bahloul, Comparison of position of a heated thin plate located in a cavity for natural convection, Int. Commun. Heat Mass Transf. 31 (2004) 121–132 [CrossRef] [EDP Sciences] [Google Scholar]
  15. M. El Abdallaoui, M. Hasnaoui, A. Amahmid, Lattice-Boltzmann modeling of natural convection between a square outer cylinder and an inner isosceles triangular heating body, Numer. Heat Transf. A 66 (2014) 1076–1096 [CrossRef] [Google Scholar]
  16. M. Kalteh, K. Javaherdeh, T. Azarbarzin, Numerical solution of nanofluid mixed convection heat transfer in a lid-driven square cavity with a triangular heat source, Powder Technol. 253 (2014) 780–788 [CrossRef] [Google Scholar]
  17. Z. Boulahia, A. Wakif, R. Sehaqui, Numerical study of mixed convection of the nanofluids in two-sided lid-driven square cavity with a pair of triangular heating cylinders, J. Eng. 2016 (2016) 8, Article ID 8962091 [CrossRef] [Google Scholar]
  18. Z. Boulahia, A. Wakif, R. Sehaqui, Natural convection heat transfer of the nanofluids in a square enclosure with an inside cold obstacle, Int. J. Innov. Sci. Res. 21 (2016) 367–375 [Google Scholar]
  19. Z. Boulahia, R. Sehaqui, Numerical simulation of natural convection of nanofluid in a square cavity including a square heater, Int. J. Sci. Res. 4 (2015) 1718–1722. ijsr.net [Google Scholar]
  20. Z. Boulahia, A. Wakif, R. Sehaqui, Numerical investigation of mixed convection heat transfer of nanofluid in a lid driven square cavity with three triangular heating blocks, Int. J. Comput. Appl. 143 (2016) 37–45 [Google Scholar]
  21. Z. Boulahia, A. Wakif, R. Sehaqui, Mixed convection heat transfer of Cu-water nanofluid in a lid driven square cavity with several heated triangular cylinders, Int. J. Innov. Appl. Stud. 17 (2016) 82–89 [Google Scholar]
  22. A. AlAmiri, K. Khanafer, I. Pop, Buoyancy-induced flow and heat transfer in a partially divided square enclosure, Int. J. Heat Mass Transf. 52 (2009) 3818–3828 [CrossRef] [Google Scholar]
  23. H.C. Brinkman, The viscosity of concentrated suspensions and solutions, J. Chem. Phys. 20 (1952) 571 [CrossRef] [Google Scholar]
  24. J. Maxwell, A treatise on electricity and magnetism, vol. II, Oxford University Press, Cambridge, 1881 [Google Scholar]
  25. M. Corcione, Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids, Energy Convers. Manag. 52 (2011) 789–793 [CrossRef] [Google Scholar]
  26. A.J. Chamkha, E. Abu-Nada, Mixed convection flow in single- and double-lid driven square cavities filled with water-Al2O3 nanofluid: effect of viscosity models, Eur. J. Mech. − B/Fluids 36 (2012) 82–96 [CrossRef] [Google Scholar]
  27. R.S. Vajjha, D.K. Das, Experimental determination of thermal conductivity of three nanofluids and development of new correlations, Int. J. Heat Mass Transf. 52 (2009) 4675–4682 [CrossRef] [Google Scholar]
  28. A.T. Utomo, H. Poth, P.T. Robbins, A.W. Pacek, Experimental and theoretical studies of thermal conductivity, viscosity and heat transfer coefficient of titania and alumina nanofluids, Int. J. Heat Mass Transf. 55 (2012) 7772–7781 [CrossRef] [Google Scholar]
  29. Z. Haddad, H.F. Oztop, E. Abu-Nada, A. Mataoui, A review on natural convective heat transfer of nanofluids, Renew. Sustain. Energy Rev. 16 (2012) 5363–5378 [CrossRef] [Google Scholar]
  30. S.V. Patankar, Numerical heat transfer and fluid flow, McGraw-Hill, Washington, 1980 [Google Scholar]
  31. D.B. Spalding, A novel finite difference formulation for differential expressions involving both first and second derivatives, Int. J. Numer. Methods Eng. 4 (1972) 551–559 [CrossRef] [Google Scholar]
  32. G. De Vahl Davis, Natural convection of air in a square cavity: a bench mark numerical solution, Int. J. Numer. Methods Fluids 3 (1983) 249–264 [CrossRef] [Google Scholar]
  33. G. Barakos, E. Mitsoulis, Natural convection flow in a square cavity revisited: laminar and turbulent models with wall functions, Int. J. Numer. Methods Fluids 18 (1994) 695–719 [CrossRef] [Google Scholar]
  34. F.P. Incropera, D.P. DeWitt, Introduction to heat transfer, Wiley, New York, 2002 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.