Open Access
Issue
Mechanics & Industry
Volume 18, Number 5, 2017
Article Number 501
Number of page(s) 17
DOI https://doi.org/10.1051/meca/2016026
Published online 25 August 2017
  1. K.M. Khanafer, A.J. Chamkha, Mixed convection flow in a lid-driven enclosure filled with a fluid-saturated porous medium, Int. J. Heat Mass Transf. 42 (1999) 2465–2481 [CrossRef] [Google Scholar]
  2. T.C. Jue, Analysis of thermal convection in a fluid-saturated porous cavity with internal heat generation, Heat Mass Transf. 40 (2003) 83–89 [CrossRef] [Google Scholar]
  3. H.F. Oztop, Natural convection in partially cooled and inclined porous rectangular enclosures, Int. J. Therm. Sci. 46 (2007) 149–156 [Google Scholar]
  4. A. Misirlioglu, The effect of rotating cylinder on the heat transfer in a square cavity filled with porous medium, Int. J. Eng. Sci. 44 (2006) 1173–1187 [CrossRef] [Google Scholar]
  5. E. Vishnuvardhanarao, M.K. Das, Laminar mixed convection in a parallel two-sided lid-driven differentially heated square cavity filled with a fluid-saturated porous medium, Numer. Heat Transfer A. 53 (2008) 88–110 [CrossRef] [Google Scholar]
  6. A.J. Chamkha, A. Al-Mudhaf, Double-diffusive natural convection in inclined porous cavities with various aspect ratios and temperature-dependent heat source or sink, Heat Mass Transf. 44 (2008) 679–693 [CrossRef] [Google Scholar]
  7. T. Basak, S. Roy, S.K. Singh, I. Pop, Analysis of mixed convection in a lid-driven porous square cavity with linearly heated side wall(s), Int. J. Heat Mass Transf. 53 (2010) 1819–1840 [CrossRef] [Google Scholar]
  8. K. Khanafer, K. Vafai, M. Lightstone, Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, Int. J. Heat Mass Transf. 46 (2003) 3639–3653 [CrossRef] [Google Scholar]
  9. R.Y. Jou, S.C. Tzeng, Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures, Int. J. Heat Mass Transf. 33 (2006) 727–736 [Google Scholar]
  10. K.S. Hwang, J.H. Lee, S.P. Jang, Buoyancy-driven heat transfer of water-based Al2O3 nanofluids in a rectangular cavity, Int. J. Heat Mass Transf. 50 (2007) 4003–4010 [CrossRef] [Google Scholar]
  11. C.J. Ho, M.W. Chen, Z.W. Li, Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity, Int. J. Heat Mass Transf. 51 (2008) 4506–4516 [CrossRef] [Google Scholar]
  12. M.A. Mansour, R.A. Mohamed, M.M. Abd-Elaziz, S.E. Ahmed, Numerical simulation of mixed convection flows in a square lid-driven cavity partially heated from below using nanofluid, Int. Commun. Heat Mass Transf. 37 (2010) 1504–1512 [CrossRef] [Google Scholar]
  13. M. Muthtamilselvan, P. Kandaswamy, J. Lee, Heat transfer enhancement of copper-water nanofluids in a lid-driven enclosure, Commun. Nonlinear Sci. Numer. Simul. 15 (2010) 1501–1510 [CrossRef] [MathSciNet] [Google Scholar]
  14. B. Ghasemi, S.M. Aminossadati, Mixed convection in a lid-driven triangular enclosure filled with nanofluids, Int. Commun. Heat Mass Transf. 37 (2010) 1142–1148 [CrossRef] [Google Scholar]
  15. D.A. Nield, A.V. Kuznetsov, The Cheng-Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid, Int. J. Heat Mass Transf. 52 (2009) 5792–5795 [Google Scholar]
  16. P. Cheng, W.J. Minkowycz, Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike, J. Geophys. Res. 82 (1977) 2040–2044 [Google Scholar]
  17. A.V. Kuznetsov, D.A. Nield, The onset of double-diffusive nanofluid convection in a layer of a saturated porous medium, Transp. Porous Med. 85 (2010) 941–951 [CrossRef] [MathSciNet] [Google Scholar]
  18. S. Ahmad, I. Pop, Mixed convection boundary layer flow from a vertical flat plate embedded in a porous medium filled with nanofluids, Int. Commun. Heat Mass Transf. 37 (2010) 987–991 [CrossRef] [Google Scholar]
  19. N. Mittal, V. Manoj, D. Santhosh Kumar, A. Satheesh, Numerical simulation of mixed convection in a porous medium filled with water/Al2O3 nanofluid, Heat Trans. Asian Res. 42 (2013) 46–59 [CrossRef] [Google Scholar]
  20. M.T. Nguyen, A.M. Aly, S.W. Lee, Natural convection in a non-darcy porous cavity filled with Cu-water nanofluid using the characteristic-based split procedure in finite-element method, Numer. Heat Transf. A 67 (2015) 224–247 [CrossRef] [Google Scholar]
  21. C. Zhang, L. Zheng, X. Zhang, G. Chen, MHD flow and radiation heat transfer of nanofluids in porous media with variable surface heat flux and chemical reaction, Appl. Math. Modell. 39 (2015) 165–181 [CrossRef] [Google Scholar]
  22. J.C. Maxwell, A treatise on electricity and magnetism, second ed, Oxford University Press, Cambridge, 1904, pp. 435–441 [Google Scholar]
  23. W. Yu, S.U.S. Choi, The role of inter facial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, J. Nano Res. 5 (2003) 167–171 [Google Scholar]
  24. S.V. Patankar, Numerical heat transfer and fluid flow, Hemisphere, Washington, DC, 1980 [Google Scholar]
  25. T. Hayase, J.A.C. Humphrey, R. Grief, A consistently formulated QUICK scheme for fast and stable convergence using finite-volume iterative procedures, J. Comput. Phys. 98 (1992) 108–118 [CrossRef] [Google Scholar]
  26. S. Roy, T. Basak, Finite element analysis of natural convection flows in a square cavity with non-uniformly heated wall(s), Int. J. Eng. Sci. 43 (2005) 668–680 [CrossRef] [Google Scholar]
  27. A. Arefmanesh, M. Mahmoodi, Effects of uncertainties of viscosity models for Al2O3-water nanofluid on mixed convection numerical simulations, Int. J. Therm. Sci. 50 (2011) 1706–1719 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.