Issue
Mechanics & Industry
Volume 18, Number 8, 2017
Experimental Vibration Analysis
Article Number 803
Number of page(s) 11
DOI https://doi.org/10.1051/meca/2017043
Published online 21 March 2018
  1. D.P. Connolly, G. Kouroussis, O. Laghrouche, C. Ho, M.C. Forde, Benchmarking railway vibrations − track, vehicle, ground and building effects, Constr Build. Mater. 92 (2015) 64–81 [CrossRef] [Google Scholar]
  2. G. Kouroussis, C. Conti, O. Verlinden, Building vibrations induced by human activities: a benchmark of existing standards, Mech. Ind. 15 (2014) 345–353 [CrossRef] [Google Scholar]
  3. D. Stiebel, R. Muller, E. Bongini, A. Ekbald, G. Coquel, A.A. Alguacil, Definition of reference cases typical for hot-spots in europe with existing vibration problems. Technical report, Rivas Project SCP0-GA- 2010 -265754, Report to the EC (deliverable D1. 5), 2012 [Google Scholar]
  4. UIC High Speed Department, High speed lines in the world. Technical report, International Union of Railways, 2013 [Google Scholar]
  5. D.P. Connolly, G. Marecki, G. Kouroussis, I. Thalassinakis, P.K. Woodward, The growth of railway ground vibration problems − a review, Sci, Total Environ. 568 (2016) 1276–1282 [CrossRef] [Google Scholar]
  6. C. Madshus, A.M. Kaynia, High-speed railway lines on soft ground: dynamic behaviour at critical train speed, J. Sound Vib. 231 (2000) 689–701 [CrossRef] [Google Scholar]
  7. L. Auersch, S. Said, Attenuation of ground vibrations due to different technical sources, Earthq. Eng. Eng. Vib. 9 (2010) 337–344 [CrossRef] [Google Scholar]
  8. G. Alexandrou, G. Kouroussis, O. Verlinden, A comprehensive prediction model for vehicle/track/soil dynamic response due to wheel flats, J. Rail Rapid Transit 230 (2016) 1088–1104 [CrossRef] [Google Scholar]
  9. J. Nielsen, A. Mirza, S. Cervello, P. Huber, R. Müller, B. Nelain, P. Ruest, Reducing train-induced ground-borne vibration by vehicle design and maintenance, Int. J. Rail Transp. 3 (2015) 17–39 [CrossRef] [Google Scholar]
  10. D. Waddington, J. Woodcock, M.G. Smith, S. Janssen, K.P. Waye, Cargovibes: human response to vibration due to freight rail traffic, Int. J. Rail Transp. 3 (2015) 233–248 [CrossRef] [Google Scholar]
  11. G. Kouroussis, D.P. Connolly, K. Vogiatzis, O. Verlinden, Modelling the environmental effects of railway vibrations from different types of rolling stock − a numerical study, Shock Vib. 16 (2015) (article ID 142807) [Google Scholar]
  12. U.S. Department of Transportation (Federal Railroad Administration), High-speed ground transportation. Noise and vibration impact assessment. Technical Report 293630–1, Office of Railroad Development Washington, 1998 [Google Scholar]
  13. M. Crispino, M. D'Apuzzo, Measurement and prediction of traffic-induced vibrations in a heritage building, J. Sound Vib. 246 (2001) 319–335 [CrossRef] [Google Scholar]
  14. K. Vogiatzis, Protection of the cultural heritage from underground metro vibration and ground-borne noise in Athens centre: the case of the Kerameikos archaeological museum and Gazi cultural centre, Int. J. Acoust. Vib. 17 (2012) 59–72 [Google Scholar]
  15. Y. Sato, A. Matsumoto, K. Knothe, Review on rail corrugation studies, Wear 253 (2002) 130–139 [CrossRef] [Google Scholar]
  16. K. Vogiatzis, G. Kouroussis, Prediction and efficient control of vibration mitigation using floating slabs: practical application at Athens metro lines 2 and 3, Int. J. Rail Transp. 3 (2015) 215–232 [CrossRef] [Google Scholar]
  17. L. Auersch, Theoretical and experimental excitation force spectra for railway-induced ground vibration: vehicle-track-soil interaction, irregularities and soil measurements, Veh. Syst. Dyn. 48 (2010) 235–261 [CrossRef] [Google Scholar]
  18. H. Verbraken, H. Eysermans, E. Dechief, S. Francois, G. Degrande, G. Lombaert, Development of a hybrid prediction method for railway induced vibration. In: B. Bergen, P. Sas, (Ed.), ISMA2010 International Conference on Noise and Vibration Engineering, Leuven, Belgium, 2010, pp. 3559–3572 [Google Scholar]
  19. D.P. Connolly, G. Kouroussis, A. Giannopoulos, O. Verlinden, P.K. Woodward, M.C. Forde, Assessment of railway vibrations using an efficient scoping model, Soil Dyn, Earthq. Eng. 58 (2014) 37–47 [CrossRef] [Google Scholar]
  20. D.P. Connolly, G. Kouroussis, P.K. Woodward, O. Verlinden, A. Giannopoulos, M.C. Forde, Scoping prediction of re-radiated ground-borne noise and vibration near high speed rail lines with variable soils, Soil Dyn. Earthq. Eng. 66 (2014) 78–88 [Google Scholar]
  21. G. Kouroussis, D.P. Connolly, G. Alexandrou, K. Vogiatzis, Railway ground vibrations induced by wheel and rail singular defects, Veh. Syst. Dyn. 53 (2015) 1500–1519 [CrossRef] [Google Scholar]
  22. G. Kouroussis, D.P. Connolly, G. Alexandrou, K. Vogiatzis, The effect of railway local irregularities on ground vibration, Transp. Res. − Part D: Transp. Environ. 39 (2015) 17–30 [Google Scholar]
  23. G. Kouroussis, O. Verlinden, Prediction of railway induced ground vibration through multibody and finite element modelling, Mech. Sci. 4 (2013) 167–183 [CrossRef] [Google Scholar]
  24. D. Connolly, A. Giannopoulos, M.C. Forde, Numerical modelling of ground borne vibrations from high speed rail lines on embankments, Soil Dyn. Earthq. Eng. 46 (2013) 13–19 [CrossRef] [Google Scholar]
  25. G. Kouroussis, D.P. Connolly, O. Verlinden, Railway induced ground vibrations − a review of vehicle effects, Int. J. Rail Transp. 2 (2014) 69–110 [CrossRef] [Google Scholar]
  26. P. Galvín, J. Domínguez, High-speed train-induced ground motion and interaction with structures, J. Sound Vib. 307 (2007) 755–777 [CrossRef] [Google Scholar]
  27. P. Alves Costa, R. Calçada, A. Silva Cardoso, A. Bodare, Influence of soil non-linearity on the dynamic response of high–speed railway tracks, Soil Dyn. Earthq. Eng. 30 (2010) 221–235 [CrossRef] [Google Scholar]
  28. D. Connolly, A. Giannopoulos, W. Fan, P.K. Woodward, M.C. Forde, Optimising low acoustic impedance back-fill material wave barrier dimensions to shield structures from ground borne high speed rail vibrations, Constr. Build. Mater. 44 (2013) 557–564 [CrossRef] [Google Scholar]
  29. O. Laghrouche, D. Le Houédec. Soil–railway interaction for active isolation of traffic vibration. in: B.H.V. Topping, (Ed.), Advances in Simulation and Interaction Techniques, Civil–Comp Ltd, Edinburgh, Scotland, 1994, pp. 31–36 [Google Scholar]
  30. M. Maldonado, O. Chiello, D. Le Houédec, Propagation of vibrations due to a tramway line, in: Springer/Heidelberg (Ed.), Noise and Vibration Mitigation for Rail Transportation Systems, Proceedings of the 9th International Workshop on Railway Noise, SpringerLink, Berlin, Germany, 2008, vol. 99, pp. 158–164 [Google Scholar]
  31. G. Kouroussis, N. Pauwels, P. Brux, C. Conti, O. Verlinden, A numerical analysis of the influence of tram characteristics and rail profile on railway traffic ground-borne noise and vibration in the brussels region, Sci. Total Environ. 482–483 (2014) 452–460 [CrossRef] [PubMed] [Google Scholar]
  32. J.T. Nelson, H.J. Saurenman, A prediction procedure for rail transportation groundborne noise and vibration, Transp. Res. Rec. 1143 (1987) 26–35 [Google Scholar]
  33. H. Verbraken, G. Lombaert, G. Degrande, Verification of an empirical prediction method for railway induced vibrations by means of numerical simulations, J. Sound Vib. 330 (2011) 1692–1703 [CrossRef] [Google Scholar]
  34. E.C. Bovey, Development of an impact method to determine the vibration transfer characteristics of railway installations, J. Sound Vib. 87 (1983) 357–370 [CrossRef] [Google Scholar]
  35. J.-F. Semblat, M.P. Luong, Wave propagation through soils in centrifuge testing, J. Earthq. Eng. 2 (1998) 147–171 [Google Scholar]
  36. H. Mouzakis, K. Vogiatzis, Ground-borne noise and vibration transmitted from subways networks to a typical Athenian multi-story reinforced concrete building, in: Proceedings of the 23rd International Congress on Sound and Vibration, Athens, Greece, 2016 [Google Scholar]
  37. H. Mouzakis, Vibrations and cultural heritage in Greece (keynote lecture), in: Proceedings of the 23rd International Congress on Sound and Vibration, Athens, Greece, 2016 [Google Scholar]
  38. G. Kouroussis, K.E. Vogiatzis, D.P. Connolly, A combined numerical/experimental prediction method for urban railway vibration, Soil Dyn. Earthq. Eng. 97 (2017) 377–386 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.