Mechanics & Industry
Volume 18, Number 8, 2017
Experimental Vibration Analysis
Article Number 807
Number of page(s) 18
Published online 28 May 2018
  1. M. Cao, Q. Pizhong, Integrated Wavelet Transform and its application to vibration mode shapes for the damage detection of beam-type structures., Smart Mater. Struc. 17 (2008) 055014, DOI:10.1088/0964-1726/17/5/055014 [CrossRef] [Google Scholar]
  2. M. Solis, M. Algaba, P. Galvan, A combined wavelet-modal analysis for damage location in beams Proc., Int. Conf. Noise Vib. Eng. ISMA 2012 (2013) 777–790, [Google Scholar]
  3. P. Cawley, R.D. Adams, The location of defects in structures from measurements of natural frequencies, J. Strain Anal. Eng. Des. 14 (1979) 49–57, DOI:10.1243/03093247V142049 [CrossRef] [Google Scholar]
  4. O.S. Salawu, Detection of structural damage through changes in frequency: a review, Eng. Struct., 19 (1997) 718–723, DOI:10.1016/S0141-0296(96)00149-6 [CrossRef] [Google Scholar]
  5. R. Clara Serra, M. Raffy, C. Gontier, A subspace fitting method for structural modal identification in time domain, in: Proceedings of the 25th International Conference on Noise and Vibration engineering (ISMA25), Leuven, Belgium, 2000, [Google Scholar]
  6. G. Gautier, R. Serra, J.-M. Mencik, Vibratory diagnosis by finite element model updating and operational modal analysis, Mech. & Ind. 14 (2013) 145–149, DOI:10.1051%2fmeca%2f2013055 [CrossRef] [Google Scholar]
  7. G. Gautier, J.-M. Mencik, R. Serra, A finite element-based subspace fitting approach for structure identification and damage localization, Mech. Sys. Signal Process. 58–59 (2015) 143–159, DOI: 10.1016%2fj.ymssp.2014.12.003 [CrossRef] [Google Scholar]
  8. G. Gautier, R. Serra, J.-M. Mencik Roller bearing monitoring by new subspace-based damage indicator, Shock Vib. (2015) 828093 11, DOI:10.1155/2015/828093 [Google Scholar]
  9. R. J. Allemang, D.L. Brown, A correlation coefficient for modal vector analysis, in: Proceedings of the 1st International Modal Analysis Conference & Exhibit, 1982, pp. 110–116 [Google Scholar]
  10. J.-T. Kim, Y.-S. Ryu, H.-M. Cho, N. Stubbs, Damage identification in beam-type structures: Frequency-based method vs mode-shape-based method, Eng. Struc. 25 (2003) 57–67 [CrossRef] [Google Scholar]
  11. N.A.J. Lieven, D. J. Ewins, Spatial Correlation of Mode Shapes: the Coordinate Modal Assurance Criterion (COMAC), in: Proceedings, International Modal Analysis Conference, 690–695, 1988 [Google Scholar]
  12. A.K. Pandey, M. Biswas, M.M. Samman, Damage detection from changes in curvature mode shapes, J. Sound Vib. 145 (1991) 321–332 [CrossRef] [Google Scholar]
  13. M. De Roeck, G.A. Wahab, Damage detection in bridges using modal curvatures: application to a real damage scenario, J. Sound Vib. 226 (1999) 217–235, DOI:10.1006/jsvi.1999.2295 [CrossRef] [Google Scholar]
  14. O.S. Salawu, C. Williams, Damage location using vibration mode shapes, in: Proceedings of the 12th International Modal Analysis Conference, Honolulu, Hawaii, USA, 1994, pp. 933–939 [Google Scholar]
  15. J.T. Kim, C.R. Farrar, N. Stubbs, Field Verification of a nondestructive damage localization and severity estimation algorithm, in: Proceedings of the 13th International Modal Analysis Conference (IMAC XIII), 182, 1995, pp. 210–218 [Google Scholar]
  16. E. Sazonov, P. Klinkhachorn, Optimal spatial sampling interval for damage detection by curvature or strain energy mode shapes, J. Sound Vib. 285 (2005) 783–801 [CrossRef] [Google Scholar]
  17. A.K. Pandey, M. Biswas, Damage detection in structures using changes in flexibility, J. Sound Vib. 169 (1994) 3–17 [CrossRef] [Google Scholar]
  18. I. Daubechies, Ten lectures on Wavelets, J. Acoust. Soc. Am. 93 (1993) 1671 [CrossRef] [Google Scholar]
  19. C. Surace, R. Ruotolo, Crack detection of a beam using the wavelet transform, Int. Soc. Opt. Eng. 1994. [Google Scholar]
  20. K. Liew, Q. Wang, Application of Wavelet Theory for Crack Identification in Structures, J. Eng. Mech. (1998) 152–157 [CrossRef] [Google Scholar]
  21. J. Hong, Y.Y. Kim, H.C. Lee, Y.W. Lee, Damage detection using the Lipschitz exponent estimated by the wavelet transform: Applications to vibration modes of a beam, Int. J. Solids Struc. 39 (2002) 1803–1816 [CrossRef] [Google Scholar]
  22. E. Douka, S. Loutridis, A. Trochidis, Crack identification in beams using wavelet analysis, Int. J. Solids Stru. 40 (2003) 3557–3569 [CrossRef] [Google Scholar]
  23. B. Chen, Y. Kang, P. Li, W. Xie, Detection on structural sudden damage using continuous Wavelet transform and Lipschitz Exponent, Shock Vib. 2015 (2015) 1–17 [Google Scholar]
  24. N. Wu, Q. Wang, Experimental studies on damage detection of beam structures with wavelet transform, Int. J. Eng. Sci. 49 (2011) 253–261 [CrossRef] [Google Scholar]
  25. P. Argoul, T.-P. Le, Instantaneous indicators of structural behaviour based on the continuous cauchy wavelet analysis, Mech. Sys. Signal Process. 17 (2003) 243–250, DOI:10.1006/mssp.2002.1557 [CrossRef] [Google Scholar]
  26. G., Venini, P. Naldi, Wavelet analysis of structures: statics, dynamics and damage identification, Meccanica (1997) 223–230 [Google Scholar]
  27. C.-J. Lu, Y.-T. Hsu, Vibration analysis of an inhomogeneous string for damage detection by wavelet transform, Int. J. Mech. Sci. (2002) 745–754 [Google Scholar]
  28. S.G. Mallat, A theory for multi resolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Anal. Mach. Intell. 11 (1989) 674–693 [NASA ADS] [CrossRef] [Google Scholar]
  29. S. Zhong, S.O. Oyadiji, Crack detection in simply supported beams without baseline modal parameters by stationary wavelet transform, Mech. Sys. Signal Process. 21 (2007) 1853–1884 [CrossRef] [Google Scholar]
  30. M. Rucka, K. Wilde, Application of continuous wavelet transform in vibration based damage detection method for beams and plates, J. Sound Vib. 297 (2006) 536–550 [CrossRef] [Google Scholar]
  31. M. Masoumi, M.R. Ashory, Damage identification from uniform load surface using continuous and stationary wavelet transforms, Lat. Am. J. Solids Struc. 11 (2014) 738–754 [CrossRef] [Google Scholar]
  32. S.G. Mallat, A wavelet tour of signal processing, Academic Press, London, 1999 [Google Scholar]
  33. A.V. Ovanesova, L.E. Suárez, Applications of wavelet transforms to damage detection in frame structures, Eng. Struc. 26 (2004) 39–49 [CrossRef] [Google Scholar]
  34. B.K.R. Prasad, N. Lakshmanan, K. Muthumani, et al., Enhancement of damage indicators in wavelet and curvature analysis, Sadhana 31 (2006) 463, DOI:10.1007/BF02716787 [CrossRef] [Google Scholar]
  35. X. Jiang, Z.J. Ma, W.-X. Ren, Crack detection from the slope of the mode shape using complex continuous Wavelet transform, Comput. Aided Civil Infrastruct. Eng. 27 (2011) 187–201 [CrossRef] [Google Scholar]
  36. M. Rucka, Damage detection in beams using Wavelet Transform on higher vibration modes, J. Theor. Appl. Mech. 49 (2011) 399–417 [Google Scholar]
  37. A. Gentile, A. Messina, On the continuous wavelet transforms applied to discrete vibrational data for detecting open cracks in damaged beams, Int. J. Solids Struc. 40 (2003) 295–315 [CrossRef] [Google Scholar]
  38. S. Zhong, S.O. Oyadiji, Detection of cracks in simply-supported beams by continuous wavelet transform of reconstructed modal data, Comput. Struc. 89 (2011) 127–148 [CrossRef] [Google Scholar]
  39. M. Radzieński, M. Krawczuk, M. Palacz, Improvement of damage detection methods based on experimental modal parameters, Mech. Sys. Signal Process. 25 (2011) 2169–2190 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.