Open Access
Mechanics & Industry
Volume 19, Number 1, 2018
Article Number 110
Number of page(s) 9
Published online 31 August 2018
  1. M. Akay, D.F. Oregan, ‘Fracture behaviour of glass fibre reinforced polyamide mouldings, Polym. Test. 14 (1995) 149–162 [CrossRef] [Google Scholar]
  2. J.P. Tancrez, J. Pabiot, F. Rietsch. Damage and fracture mechanisms in thermoplastic-matrix composites in relation to processing and structural parameters, Compos. Sci. Technol. 56 (1996) 725–731 [CrossRef] [Google Scholar]
  3. J.L. Thomason, The influence of fibre properties of the performance of glass-fibre-reinforced polyamide 66, Compos. Sci. Technol. 59 (1999) 2315–2328 [CrossRef] [Google Scholar]
  4. S.-Y. Fu, B. Lauke, A. San, Effect of fiber length and fiber orientation distributions on the tensile strength of short fiber reinforced polymers, Compos. Sci. Technol. 56 (1996) 1179–1190 [CrossRef] [Google Scholar]
  5. C. Bouraoui, R.B. Sghaier, R. Fathallah, An engineering predictive design approach of high cycle fatigue reliability of shot peened metallic parts, Mater. Des. 30 (2009) 475–486 [CrossRef] [Google Scholar]
  6. R.B. Sghaier, C. Bouraoui, R. Fathallah, T. Hassine, A. Dogui, Probabilistic high cycle fatigue behaviour prediction based on global approach criteria, Int. J. Fatigue 29 (2007) 209–221 [CrossRef] [Google Scholar]
  7. Q. Xueyong, R.T. Haftka, Deterministic and reliability-based optimization of composite laminates for cryogenic environments, AIAA J. 41 (2013) 10–19 [Google Scholar]
  8. Z. Sun, C. Wang, X. Niu, Y. Song, A response surface approach for reliability analysis of 2. 5D C/SiC composites turbine blade, Compos. Part B 85 (2016) 277–285 [CrossRef] [Google Scholar]
  9. M. Lemaire, A. Chateauneuf, J.C. Mitteau, Fiabilité des structures: couplage mécano-fiabiliste statique, Edit Hermes Paris 52 (2005) 620, [In French] [Google Scholar]
  10. H. Karadeniz, Uncertainty modeling in the fatigue reliability calculation of offshore structures, Reliab. Eng. Syst. Saf. 74 (2001) 23–35 [CrossRef] [Google Scholar]
  11. Y.G. Zhao, T. Ono, Oment for structural reliability, Struct. Saf. 23 (2001) 47–75 [CrossRef] [Google Scholar]
  12. P. Bjerager, Methods for structural reliability computation: Reliability problems: general principles and applications in mechanics of solid and structures, Springer Verlag, New York, Vol. 8, 1991, pp. 89–136 [CrossRef] [Google Scholar]
  13. A. Haldar, S. Mahadevan, Probability, reliability, and statistical methods in engineering design, John Wiley & Sons, New York, 2000 [Google Scholar]
  14. R. Rackwitz, Reliability analysis: a review and some perspectives, Struct. Saf. 23 (2001) 365–395 [Google Scholar]
  15. R.H. Myers, D.H. Montgomery, Response surface methodology, John Wiley & Sons, USA, 1995 [Google Scholar]
  16. B. Mouhmid, A. Imad, N. Benseddiq, S. Benmedakhène and A. Maazouz, A study of the mechanical behaviour of a glass fibre reinforced polyamide 6, 6: Experimental investigation, Polym. Test. 25 (2006) 544–552 [CrossRef] [Google Scholar]
  17. B. Mouhmid, Etude de l'endommagement et de la rupture d'un polyamide 66 chargé en fibres de verre courtes, Thèse, Université des Sciences et Technologies de Lille, 2007 [Google Scholar]
  18. V. Ceolho, Effects of strain rate and temperature on the mechanical properties of gfrp composites, Therm. Eng. 10 (2011) 03–06 [Google Scholar]
  19. M. Todo, K. Takahashi, P. Beguelin, H. Kausch, Strain rate dependence of the tensile fracture behaviour of woven cloth reinforced polyamide composites, Compos. Sci. Technol. 60 (2000) 763–771 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.