Open Access
Mechanics & Industry
Volume 19, Number 2, 2018
Article Number 201
Number of page(s) 13
Published online 03 September 2018
  1. S.B. Glavatskih, Steady state performance characteristics of a tilting pad thrust bearing, J Tribol 123 (2001) 608 [CrossRef] [Google Scholar]
  2. J. Wang, F. Yan, Q. Xue, Tribological behavior of PTFE sliding against steel in sea water, Wear 267 (2009) 1634–1641 [CrossRef] [Google Scholar]
  3. J.H. Jia, J.J. Lu, H.D. Zhou, J.M. Chen, Tribological behavior of Ni-based composite under distilled water lubrication, Mater Sci Eng A Struct Mater Prop Microstruct Process 381 (2004) 80–85 [CrossRef] [Google Scholar]
  4. W. Huang, Y. Xu, Y. Zheng, X. Wang, The tribological performance of Ti(C,N)-based cermet sliding against Si3N4 in water, Wear 270 (2011) 682–687 [CrossRef] [Google Scholar]
  5. H. Unal, A. Mimaroglu, Friction and wear characteristics of PEEK and its composite under water lubrication, J Reinf Plast Compos 25 (2006) 1659–1667 [CrossRef] [Google Scholar]
  6. J. Jia, J. Chen, H. Zhou, J. Wang, H. Zhou, Friction and wear properties of bronze-graphite composite under water lubrication, Tribol Int 37 (2004) 423–429 [CrossRef] [Google Scholar]
  7. Y.D. Tridimas, D.R. Allanson, N.H. Woolley, D.L. Cabrera, Film pressure distribution in water-lubricated rubber journal bearings, Proc Inst Mech Eng Part J: J Eng Tribol 219 (2005) 125–132 [CrossRef] [Google Scholar]
  8. N. Wang, Q. Meng, P. Wang, T. Geng, X. Yuan, Experimental research on film pressure distribution of water-lubricated rubber bearing with multiaxial grooves, J Fluids Eng 135 (2013) 084501 [CrossRef] [Google Scholar]
  9. R. Pai, R.S. Pai, Stability of four-axial and six-axial grooved water-lubricated journal bearings under dynamic load, Proc Inst Mech Eng Part J: J Eng Tribol 222 (2008) 683–691 [CrossRef] [Google Scholar]
  10. B.C. Majumdar, R. Pai, D.J. Hargreaves, Analysis of water-lubricated journal bearings with multiple axial grooves, Proc Inst Mech Eng Part J: J Eng Tribol 218 (2004) 135–146 [CrossRef] [Google Scholar]
  11. B.D. Heberley, Advances in hybrid water-lubricated journal bearings for use in ocean vessels, Massachusetts Institute of Technology, Ann Arbor, USA, 2013. [Google Scholar]
  12. G.Y. Gao, Z.W. Yin, D. Jiang, X.L. Zhang, Numerical analysis of plain journal bearing under hydrodynamic lubrication by water, Tribol Int 75 (2014) 31–38 [Google Scholar]
  13. W. Litwin, Marine water lubricated stern tube bearings calculations and measurements of heavy loaded bearings, in: Proceedings of the STLE/ASME International Joint Tribology Conference IJTC2008, Miami, Florida, USA, 2008. [Google Scholar]
  14. W. Litwin, Experimental investigation on marine main shaft bearings with reduced length to diameter ratio, in: Proceedings of the STLE/ASME 2010 International Joint Tribology Conference IJTC2010, San Francisco, California, USA 2010. [Google Scholar]
  15. W. Litwin, Experimental research on water lubricated three layer sliding bearing with lubrication grooves in the upper part of the bush and its comparison with a rubber bearing, Tribol Int 82 (2015) 153–161 [Google Scholar]
  16. W. Litwin, C. Dymarski, Experimental research on water-lubricated marine stern tube bearings in conditions of improper lubrication and cooling causing rapid bush wear, Tribol Int 95 (2016) 449–455 [Google Scholar]
  17. X. Zhang, X. Wang, X. Li, X. Chu, Study on influence factors of bearing capacity of water-lubricated thrust bearing and its improving methods, in Advanced Mechanical Design, 2012 [Google Scholar]
  18. X. Zhang, Z. Yin, D. Jiang, G. Gao, The design of hydrodynamic water-lubricated step thrust bearings using CFD method, Mech Ind 15 (2014) 197–206 [CrossRef] [EDP Sciences] [Google Scholar]
  19. S. Nakano, T. Kishibe, T. Inoue, H. Shiraiwa, An advanced microturbine system with water-lubricated bearings, Int J Rotating Mach (2009) 1–12 [CrossRef] [Google Scholar]
  20. K. Inoue, K. Deguchi, K. Okude, R. Fujimoto, Development of the water-lubricated thrust bearing of the hydraulic turbine generator, in: IOP Conference Series: Earth and Environmental Science, Vol. 15, 2012 072022 p. [CrossRef] [Google Scholar]
  21. R. Pai, D.J. Hargreaves, Water lubricated bearings, in: Green Tribology, Springer, Berlin Heidelberg, 2012 [Google Scholar]
  22. X. Wang, K. Koji, A. Koshi, A. Kohji, The effect of laser texturing of SiC surface on the critical load for the transition of water lubrication mode from hydrodynamic to mixed, Tribol Int 34 (2001) 703–711 [CrossRef] [Google Scholar]
  23. X.L. Wang, K. Kato, K. Adachi, K. Aizawa, Loads carrying capacity map for the surface texture design of SiC thrust bearing sliding in water, Tribol Int 36 (2003) 189–197 [CrossRef] [Google Scholar]
  24. D.L. Cabrera, N.H. Woolley, D.R. Allanson, Y.D. Tridimas, Film pressure distribution in water-lubricated rubber journal bearings, Proc Inst Mech Eng Part J: J Eng Tribol 219 (2005) 125–132 [CrossRef] [Google Scholar]
  25. X.L. Wu, Lubrication design handbook, Chemical Industry Press, Beijing, 2006 [Google Scholar]
  26. ANSYS, ANSYS FLUENT, version 14.0: user manual, ANSYS Inc, Canonsburg, USA, 2011 [Google Scholar]
  27. P.J. Zwart, A.G. Gerber, T. Belamri, A two-phase flow model for predicting cavitation dynamics, in Fifth International Conference on Multiphase Flow, Yokohama, Japan, 2004 [Google Scholar]
  28. G. Zhou, J. Ma, Y. Quan, Fluid lubrication theory, Zhejiang University, Hangzhou, 1990 [Google Scholar]
  29. B. Jakobsen, L. Floberg, The rectangular plane pad bearing, Gumpert, 1958 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.