Free Access
Issue
Mechanics & Industry
Volume 19, Number 2, 2018
Article Number 202
Number of page(s) 12
DOI https://doi.org/10.1051/meca/2018006
Published online 03 September 2018
  1. A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: part I – yield criteria and flow rules for porous ductile media, Eng. Mater. Technol. 99 (1977) 2–15 [CrossRef] [Google Scholar]
  2. A. Slimane, B. Bouchouicha, M. Benguediab, S.-A. Slimane, Parametric study of the ductile damage by the Gurson-Tvergaard-Needleman model of structures in carbon steel A48-AP, J. Mater. Res. Technol. 4 (2015) 217–223 [CrossRef] [Google Scholar]
  3. J.M. Alegre, I.I. Cuesta, P.M. Bravo, Implementation of the GTN damage model to simulate the small punch test on pre-cracked specimens, Procedia Eng. 10 (2011) 1007–1016 [CrossRef] [Google Scholar]
  4. M. He, F. Li, Z. Wang, Forming limit stress diagram prediction of aluminum alloy 5052 based on GTN model parameters determined by in situ tensile test, Chin. J. Aeronaut. 24 (2011) 378–386 [CrossRef] [Google Scholar]
  5. W. Jiang, Y. Li, J. Su, Modified GTN model for a broad range of stress states and application to ductile fracture, Eur. J. Mech. – A/Solids 57 (2016) 132–148 [CrossRef] [Google Scholar]
  6. M. Abbasi, M.A. Shafaat, M. Ketabchi, D.F. Haghshenas, M. Abbasi, Application of the GTN model to predict the forming limit diagram of IF-Steel, J. Mech. Sci. Technol. 26 (2012) 345–352 [CrossRef] [Google Scholar]
  7. Z. Chen, X. Dong, The GTN damage model based on Hill’48 anisotropic yield criterion and its application in sheet metal forming, Comput. Mater. Sci. 44 (2009) 1013–1021 [CrossRef] [Google Scholar]
  8. Y.-M. Hu, M.-Z. Chen, Y. Xiao, J. Xiao, X. Tan, Q. Tang, Y.-E. Zhou, T.-S. Cui, Parameters determination of GTN model and damage analysis of aluminum alloy 6016 sheet metal, Int. Conf. Mater. Sci. Appl. (ICMSA 2015) (2015) DOI: 10.2991/icmsa-15.2015.73 [Google Scholar]
  9. R. Amaral, P. Teixeira, E. Azinpour, A.D. Santos, J. Cesar de Sa, Evaluation of ductile failure models in sheet metal forming, MATEC Web Conf. 80 (2016) 03004 [CrossRef] [Google Scholar]
  10. J. Lemaitre, A continuous damage mechanics model for ductile fracture, J. Eng. Mater. Technol. 107 (1985) 83–89 [CrossRef] [Google Scholar]
  11. G.R. Johnson, W.H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Eng. Fract. Mech. 21 (1985) 31–48 [CrossRef] [Google Scholar]
  12. H. Yu, K. Tieu, C. Lu, Y. Lou, X. Liu, A. Godbole, C. Kong, Tensile fracture of ultrafine grained aluminum 6061 sheets by asymmetric cryorolling for microforming, Int. J. Damage Mech. 23 (2014) 1077–1095 [CrossRef] [Google Scholar]
  13. M.G. Cockcroft, D.J. Latham, Ductility and the workability of metals, Inst. Met. 96 (1968) 33–39 [Google Scholar]
  14. R. Safdarian, R.M.N. Jorge, A.D. Santos, H.M. Naeini, M.P.L. Parente, A comparative study of forming limit diagram prediction of tailor welded blanks, Int. J. Mater. Form. 8 (2015) 293–304 [CrossRef] [Google Scholar]
  15. R. Safdarian, Stress based forming limit diagram for formability characterization of 6061 aluminum, Trans. Nonferrous Met. Soc. China 26 (2016) 2433–2441 [CrossRef] [Google Scholar]
  16. R. Safdarian, Forming limit diagram prediction of tailor welded blank by modified M-K model, Mech. Res. Commun. 67 (2015) 47–57 [CrossRef] [Google Scholar]
  17. A. Afshar, R. Hashemi, R. Madoliat, D. Rahmatabadi, B. Hadiyan, Numerical and experimental study of bursting prediction in tube hydroforming of Al 7020-T6, Mech. Ind. 18 (2017) 411 [CrossRef] [Google Scholar]
  18. R. Boissiere, P. Vacher, J.J. Blandin, Scale factor and punch shape effects on the expansion capacities of an aluminum alloy during deep-drawing operations, Mech. Ind. 15 (2014) 159–166 [CrossRef] [Google Scholar]
  19. M. Parente, R. Safdarian, A. Santos, A. Loureiro, P. Vilaca, R.M.N. Jorge, A study on the formability of aluminum tailor welded blanks produced by friction stir welding, Int. J. Adv. Manuf. Technol. 83 (2016) 2129–2141 [CrossRef] [Google Scholar]
  20. S. Gatea, H. Ou, B. Lu, G. McCartney, Modelling of ductile fracture in single point incremental forming using a modified GTN model, Eng. Fract. Mech. 186 (2017) 59–79 [CrossRef] [Google Scholar]
  21. B. Teng, W. Wang, Y. Xu, Ductile fracture prediction in aluminium alloy 5A06 sheet forming based on GTN damage model, Eng. Fract. Mech. 186 (2017) 242–254 [CrossRef] [Google Scholar]
  22. L.F. Peng, Z.T. Xu, M.W. Fu, X.M. Lai, Forming limit of sheet metals in meso-scale plastic forming by using different failure criteria, Int. J. Mech. Sci. 120 (2017) 190–203 [CrossRef] [Google Scholar]
  23. A.S.f.T.a.M. (ASTM), Metals test methods and analytical procedures, American Society for Testing & Materials (ASTM), Location, Washington, 1999, pp. 78–98, 501–508 [Google Scholar]
  24. V. Hasek, Untersuchung und theoretische Beschribung wichtiger Einflussgroessen auf das Grenzformaenderungsschaubild [Research and theoretical description concerning the influences on the FLDs], Blech Rohre Profile 25 (1978) 213–220 (in German) [Google Scholar]
  25. K. Nakazima, T. Kikuma, K. Hasuka, Study on the formability of steel sheets, Yawata Tech. Rep., SEPT. 1968, 264, (1968), 8517–8530 [Google Scholar]
  26. V. Tvergaard, On localization in ductile materials containing spherical voids, Int. J. Fract. 18 (1982) 237–252 [Google Scholar]
  27. V. Tvergaard, A. Needleman, Analysis of the cup-cone fracture in a round tensile bar, Acta Metall. 32 (1984) 157–169 [CrossRef] [Google Scholar]
  28. C.C. Chu, A. Needleman, Void nucleation effects in biaxially stretched sheets, J. Eng. Mater. Technol. 102 (1980) 249–256 [CrossRef] [Google Scholar]
  29. T.B. Stoughton, A general forming limit criterion for sheet metal forming, Int. J. Mech. Sci. 42 (2000) 1–27 [CrossRef] [Google Scholar]
  30. F. Ozturk, D. Lee, Analysis of forming limits using ductile fracture criteria, J. Mater. Proc. Technol. 147 (2004) 397–404 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.