Free Access
Issue
Mechanics & Industry
Volume 19, Number 3, 2018
Article Number 308
Number of page(s) 15
DOI https://doi.org/10.1051/meca/2018021
Published online 12 September 2018
  1. Abaqus v. 6.14 documentation, Dassault Systemes Simulia Corporation [Google Scholar]
  2. C. Gao, Fe realization of a thermo-visco-plastic constitutive model using VUMAT in Abaqus/Explicit program, in: Computational Mechanics, Springer, 2007, pp. 301–301 [CrossRef] [Google Scholar]
  3. Abaqus v. 6.14 user subroutines reference guide, Dassault Systemes Simulia Corporation [Google Scholar]
  4. G.R. Johnson, W.H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, in: Proceedings of the 7th International Symposium on Ballistics, Vol. 21, The Hague, The Netherlands, 1983, pp. 541–547 [Google Scholar]
  5. S. Nemat-Nasser, On finite deformation elasto-plasticity, Int. J. Solids Struct. 18 (1982) 857–872 [CrossRef] [Google Scholar]
  6. M.-H. Yu, Generalized plasticity, Springer Science and Business Media, 2006 [Google Scholar]
  7. G.I. Taylor, H. Quinney, The latent energy remaining in a metal after cold working, Proc. R. Soc. Lond. Ser. A, 143 (1934) 307–326 (Containing Papers of a Mathematical and Physical Character) [CrossRef] [Google Scholar]
  8. J.C. Simo, T.J.R. Hughes, Computational inelasticity, Springer, 1998 [Google Scholar]
  9. M.L. Wilkins, Calculation of elastic-plastic flow, Tech. Rep., in: B. Alder (Ed.), Methods in Computational Physics, Vol. 3, Academic Press, 1963, pp. 211–263 [Google Scholar]
  10. G. Maenchen, S. Sacks, The tensor code, in: B. Alder, S. Fernback, M. Rotenberg (Eds.), Methods of Computational Physics, Vol. 3, Academic Press, New York, 1964, pp. 181–210 [Google Scholar]
  11. F. Dunne, N. Petrinic, Introduction to computational plasticity, Oxford University Press, New York, 2005 [Google Scholar]
  12. J.-P. Ponthot, Unified stress update algorithms for the numerical simulation of large deformation elasto-plastic and elasto-viscoplastic processes, Int. J. Plast. 18 (2002) 91–126 [CrossRef] [Google Scholar]
  13. R. Zaera, J. Fernández-Sáez, An implicit consistent algorithm for the integration of thermoviscoplastic constitutive equations in adiabatic conditions and finite deformations, Int. J. Solids Struct. 43 (2006) 1594–1612 [CrossRef] [Google Scholar]
  14. F.S. Acton, Numerical methods that work, Maa, 1990 [Google Scholar]
  15. W.H. Press, Numerical recipes, in: The Art of Scientific Computing, 3rd Edition, Cambridge University Press, 2007 [Google Scholar]
  16. W.K. Rule, S. Jones, A revised form for the Johnson–Cook strength model, Int. J. Impact Eng. 21 (1998) 609–624 [CrossRef] [Google Scholar]
  17. L. Schwer, Optional strain-rate forms for the Johnson–Cook constitutive model and the role of the parameter epsilon 0, in: Proceedings of the 6th European LS-DYNA Users Conference, Anwenderforum, Frankenthal, Germany, 2007 [Google Scholar]
  18. G. Jansen van Rensburg, S. Kok, Tutorial on state variable based plasticity: an abaqus UHARD subroutine [Google Scholar]
  19. G.I. Taylor, The testing of materials at high rates of loading, J. Inst. Civ. Eng. 26 (1946) 486–519 [CrossRef] [Google Scholar]
  20. M. Calamaz, D. Coupard, F. Girot, Numerical simulation of titanium alloy dry machining with a strain softening constitutive law, Mach. Sci. Technol. 14 (2010) 244–257 [CrossRef] [Google Scholar]
  21. A. Hor, F. Morel, J.-L. Lebrun, G. Germain, Modelling, identification and application of phenomenological constitutive laws over a large strain rate and temperature range, Mech. Mater. 64 (2013) 91–110 [CrossRef] [Google Scholar]
  22. M. Bäker, Finite element simulation of high-speed cutting forces, J. Mater. Proc. Technol. 176 (2006) 117–126 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.