Open Access
Issue
Mechanics & Industry
Volume 19, Number 3, 2018
Article Number 311
Number of page(s) 11
DOI https://doi.org/10.1051/meca/2018028
Published online 04 October 2018
  1. H.K. Fathy, Review of hardware-in-the-loop simulation and its prospect in the automotive area, Society of Photo-optical Instrumentation Engineers, Proc. SPIE 6228 (2006) [Google Scholar]
  2. R. Isermann, J. Schaffnit, S. Sinsel, Hardware-in-the-loop simulation for the design and testing of engine-control systems, Control Eng. Pract. 7 (1999) 643–653 [CrossRef] [Google Scholar]
  3. H. Hanselman, Hardware-in-the-loop simulation testing and its integration into a CACSD toolset, in: The IEEE International Symposium on Computer-Aided Control System Design, Dearborn, Michigan, USA, 1996, pp. 152–156 [EDP Sciences] [Google Scholar]
  4. Y. Cao, W. Teng, H. Zhang, Hardware-in-the-loop simulation for engine idle speed control based on Adaptive Neural Fuzzy Inference Engine, IEEE, 2008 [Google Scholar]
  5. N.R. Gans, W.E. Dixon, R. Lind, A. Kurdila, A hardware in the loop simulation platform for vision-based control of unmanned air vehicles, Mechatronics 19 (2009) 1043–1056 [CrossRef] [Google Scholar]
  6. D. Maclay, Si mulation gets into the loop, IEE Review (1997) 109–112 [CrossRef] [Google Scholar]
  7. J.C. Piedboeuf, M. Doyon, R. L’Archeveque, E. Martin, Simulation environments for space robot design and verification, in: Advanced Space Technologies for Robotics and Automation, Noordwijk, The Netherlands, 2000 [Google Scholar]
  8. H. Wang, Y. Guo, J. Lu, Design and validation of aeroengine control system with non-fully recovering LQG/LTR method, in: Second International Conference on Innovative Computing, Information and Control, ICICIC0, 2007, Art. No. 4428111, 2008 [Google Scholar]
  9. L. Jun, G. Ying-Qing, W. Hai-Quan, Rapid prototyping real-time simulation platform for digital electronic engine control, in: Second International Symposium on Systems and Control in Aerospace and Astronautics, ISSCAA, 2008, Art. No. 4776230, 2008 [Google Scholar]
  10. M. Montazeri-Gh, M. Nasiri, S. Jafari, Real-time multi-rate HIL simulation platform for evaluation of a jet engine fuel controller, Simul. Model. Pract. Theory 19 (2011) 996–1006 [CrossRef] [Google Scholar]
  11. A. Watanabe, S.M. Ölçmen, R.P. Leland, K.W. Whitaker, L.C. Trevino, C. Nott, Soft computing applications on a SR-30 turbojet engine, Fuzzy Sets Syst. 157 (2006) 3007–3024 [CrossRef] [Google Scholar]
  12. M. Montazeri-Gh, S. Abyaneh, S. kajemnejad, Hardware-in-the-loop simulation of two-shaft gas turbine engine’s electronic control unit, Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng. 230 (2016) 512–521 [CrossRef] [Google Scholar]
  13. M. Montazeri-Gh, M. Nasiri, M. Rajabi, M. Jamshidfard, Actuator-based hardware-in-the-loop testing of a jet engine fuel control unit in flight conditions, Elsevier, Simul. Model. Pract. Theory 21 (2012) 6577 [Google Scholar]
  14. A.S. Movaghar, A. Novinzadeh, Ideal Turbo Charger Modeling and Simulation Using bond graph Approach. in: ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers, 2011, pp. 871–879 [Google Scholar]
  15. M. Montazeri-Gh, S.A. Miran-F, Application of bond graph method in microjet engine cold start modeling to investigate the idea of injecting compressed air, in: Applied Mechanics and Materials, Trans Tech Publications, Vol. 799, 2015 [Google Scholar]
  16. N.J. Krikelis, F. Papadakis. Gas turbine modelling using pseudo-bond graphs, Int. J. Syst. Sci. 19 (1988) 537–550 [CrossRef] [Google Scholar]
  17. A. Sanei, A.B. Novinzadeh, M. Habibi. Addition of momentum and kinetic energy effects in supersonic compressible flow using pseudo bond graph approach. Math. Comput. Model. Dyn. Syst. 20 (2014) 491–503 [CrossRef] [MathSciNet] [Google Scholar]
  18. N. Uddin, J.T. Gravdahl, Bond graph modeling of centrifugal compression systems. Simulation 91 (2015) 998–1013 [CrossRef] [Google Scholar]
  19. M. Montazeri-Gh, S.A. Miran-F, Application of bond graph approach in dynamic modelling of industrial gas turbine, Mech. Ind. 18 (2017) 410 [CrossRef] [Google Scholar]
  20. M. Montazeri-Gh, S.A. Miran-F, Modeling and simulation of a two-shaft gas turbine propulsion system containing a frictional plate–type clutch, Proc. Inst. Mech. Eng. Part M: J. Eng. Maritime Environ. (2018), DOI: 10.1177/1475090218765378 [Google Scholar]
  21. S.A. Miran-F, M. Montazeri-Gh, Modeling and simulation of Jet Quad aerial robot, knowledge-based engineering and innovation (KBEI), in: 2017 IEEE 4th International Conference on. IEEE, 2017 [Google Scholar]
  22. S. Camporeale, B. Fortunato, M. Mastrovito, A modular code for real time dynamic simulation of gas turbines in simulink, ASME J. Eng. Gas Turbines Power 128 (2006) 506–517 [CrossRef] [Google Scholar]
  23. R. Chacartegui, D. Sánchez, A. Muonoz, T. Sánchez, Real time simulation of medium size gas turbines, Energy Convers. Manag. 52 (2011) 713–724 [CrossRef] [Google Scholar]
  24. N.U. Rahman, J.F. Whidborne. Real-time transient three spool turbofan engine simulation: a hybrid approach. J. Eng. Gas Turbines Power 131 (2009) 051602 [CrossRef] [Google Scholar]
  25. “SGT-600 Industrial Gas Turbine,” Siemens Industrial Turbomachinery, Duisburg, Germany, 2005, http://www.energy.siemens.com/ru/pool/hq/power-generation/gas-turbines/SGT-600/downloads/SGT-600_GT_PowerGen_EN.pdf [Google Scholar]
  26. D.C. Karnopp, D.L. Margolis, R.C. Rosenberg, System dynamics: modeling, simulation, and control of mechatronic systems, John Wiley and Sons, Hoboken, NJ, 2012 [CrossRef] [Google Scholar]
  27. J.F. Broenink, 20-sim software for hierarchical bond graph/block-diagram models. Simul. Pract. Theory 7 (1999) 481–492 [CrossRef] [Google Scholar]
  28. M. Montazeri-Gh, S. Abyaneh, Real-time simulation of a turbo-shaft engine's electronic control unit, Mech. Ind. 18 (2017) 503 [CrossRef] [Google Scholar]
  29. https://www.slideshare.net/AliRafiei2/gas-turbine-training-power-point-sample. Last check: 2017-08-19 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.