Open Access
Issue
Mechanics & Industry
Volume 19, Number 3, 2018
Article Number 312
Number of page(s) 17
DOI https://doi.org/10.1051/meca/2018001
Published online 04 October 2018
  1. J. Moran, Introduction to theoretical and computational aerodynamics, John Wiley & Sons, 1984 [Google Scholar]
  2. I.H. Abbott, A.E. VonDoenhoff, Theory of wing sections including summary of airfoil, Dover Publication, Inc., New York, 1959 [Google Scholar]
  3. G. Emanuel, Gasdynamic: theory and application, AIAA Educational Series, New York, 1986 [CrossRef] [Google Scholar]
  4. J.D.Jr. Anderson, Fundamentals of aerodynamics, 2nd Edn, McGraw-Hill Book Company, New York, USA, 1988 [Google Scholar]
  5. J.D.Jr. Anderson, Modern compressible flow with historical perspective, 2nd Edn, McGraw-Hill Book Company, New York, USA, 1982 [Google Scholar]
  6. J.D.Jr. Anderson, Hypersonic and high temperature gas dynamics, McGraw-Hill Book Company, New York, 1989 [Google Scholar]
  7. M.J. Zucro, J.D. Hoffman, Gas dynamics, Wiley, New York, Vol. 1 and 2 , 1976 [Google Scholar]
  8. T. Zebbiche, Z. Youbi, Effect of stagnation temperature on the supersonic flow parameters with application for air in nozzles, Aeronaut. J. 111 (2007) 31–40 [CrossRef] [Google Scholar]
  9. T. Zebbiche, Z. Youbi, Supersonic flow parameters at high temperature. application for air in nozzles, German Aerospace Congress 2005, DGLR-2005-0256, Friendrichshafen, Germany, 2005 [Google Scholar]
  10. E.T. Kenneth, Computation of thermally perfect properties of oblique shcok waves, NASA CR- 4749, 1996 [Google Scholar]
  11. E.T. Kenneth, Computation of thermally perfect oblique shcok waves properties, AIAA-97-0868, 35th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings, 1997 [Google Scholar]
  12. K.E. Tatum, Computation of thermally perfect oblique shock wave properties, 35th Aerospace Sciences Meeting and Exhibit, Reno, AIAA-97-0868, 1997 [Google Scholar]
  13. S.M. Yahya, Gas tables for compressible flow calculation, Fifth edition, New Age International Publishers, New Delhi, 2006 [Google Scholar]
  14. T. Zebbiche, Effect of stagnation temperature on the normal shock wave, Int. J. Aeronaut. Space Sci. 10 (2009) 1–14 [CrossRef] [Google Scholar]
  15. C.R. Peterson, P.G. Hill, Mechanics and thermodynamics of propulsion, Addition-Wesley Publishing Company Inc., New York, USA, 1965 [Google Scholar]
  16. G.P. Sutton, O. Biblarz, Rocket propulsion elements, 8ème Édn, John Wiley and Sons, 2010 [Google Scholar]
  17. T. Zebbiche, M. Salhi, M. Boun-jad, Numerical computation of supersonic flow around a pointed airfoils, J. Comput. Methods Sci. Eng. 12 (2012) 213–233. [Google Scholar]
  18. G.J. Van Wylen, Fundamentals of classical thermodynamics, John Wiley and Sons, Inc., 1973 [Google Scholar]
  19. B.J. McBride, S. Gordon, M.A. Reno, Thermodynamic Data for Fifty Reference Elements, NASA TP- 3287, 1993 [Google Scholar]
  20. T. Zebbiche, Stagnation temperature effect on the Prandtl Meyer function, AIAA J. 45 (2007) 952–954 [CrossRef] [Google Scholar]
  21. T. Zebbiche, M. Boun-jad, Numerical quadrature for the Prandtl–Meyer function at high temperature with application for air, Thermophys. Aeromech. 19 (2012) 381–384 [CrossRef] [Google Scholar]
  22. A. Raltson, A. Rabinowitz, A First Course in Numerical Analysis, McGraw Hill Book Company, 1985 [Google Scholar]
  23. A. Iserles, A first course in the numerical analysis of differential equations, Cambridge University Press, 1996 [Google Scholar]
  24. B. Démidovitch, I. Maron, Eléments de calcul numérique, Editions MIR, Moscow, Russia, 1987 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.