Free Access
Issue
Mechanics & Industry
Volume 19, Number 5, 2018
Article Number 506
Number of page(s) 15
DOI https://doi.org/10.1051/meca/2018042
Published online 17 January 2019
  1. Y. Liu, W. Steve Shepard Jr., An improved method for the reconstruction of a distributed force acting on a vibrating structure, J. Sound Vib. 291 (2006) 369–387 [Google Scholar]
  2. Y. Jia, Z.C. Yang, N. Guo, L. Wang, Random dynamic load identification based on error analysis and weighted total least squares method, J. Sound Vib. 358 (2015) 111–123 [Google Scholar]
  3. D. Ginoya, P.D. Shendge, S.B. Phadke, Delta-operator-based extended disturbance observer and its applications, IEEE Trans. Ind. Electron. 62 (2015) 5815–5828 [Google Scholar]
  4. Q. Leclère, F. Ablitzer, C. Pézerat, Practical implementation of the corrected force analysis technique to identify the structural parameter and load distributions, J. Sound Vib. 351 (2015) 106–118 [Google Scholar]
  5. L. Yu, T.H.T. Chan, Moving force identification based on the frequency-time domain method, J. Sound Vib. 261 (2003) 329–349 [Google Scholar]
  6. F.D. Barlett Jr., W.G. Flannelly, Model verification of force determination for measuring vibration loads, J. Am. Helicopter Soc. 19 (1979) 4–18 [Google Scholar]
  7. B. Hillary, D.J. Ewins, The use of strain gauges in forces determination and frequency response function, in Proceeding of 2nd International Modal Analysis Conference, Florida, USA, 1984, pp. 27–634 [Google Scholar]
  8. S.E.S. Karlsson, Identification of external structural loads from measured harmonic responses, J. Sound Vib. 196 (1996) 59–74 [Google Scholar]
  9. J. Liu, X.S. Sun, X. Han, C. Jiang, D.J. Yu, A novel computational inverse technique for load identification using the shape function method of moving least square fitting, Comput. Struct. 144 (2014) 127–137 [Google Scholar]
  10. G. Desangheer, R. Snoeys, Indirect identification of excitation force by modal coordinate transformation, in Proceedings of the 3rd IMAC, Florida, USA, 1985, pp. 685–690 [Google Scholar]
  11. H. Ory, H. Glaser, D. Holzdeppe, Quality of modal analysis and reconstruction of forcing functions based on measured output data, in Proceedings of the 4th International Modal Analysis Conference, Los Angeles, 1986, pp. 850–857 [Google Scholar]
  12. E. Jacquelin, A. Bennani, P. Hamelin, Force reconstruction: analysis and regularization of a deconvolution problem, J. Sound Vib. 265 (2003) 81–107 [Google Scholar]
  13. H. Inoue, K. Kishimoto, T. Shibuya, T. Koizumi, Estimation of impact load by inverse analysis: optimal transfer function for inverse analysis, JSME Int. J. 35 (1992) 420–427 [Google Scholar]
  14. D.C. Kammer, Input force reconstruction using a time domain technique, ASME J. Vib. Acoust. 120 (1998) 868–874 [CrossRef] [Google Scholar]
  15. P.C. Müller, Indirect measurement of nonlinear effects by state observers, in: W. Schiehlen (Ed.), Nonlinear Dynamics in Engineering Systems, IUTAM Symposium Springer, Berlin, 1990, pp. 205–215 [CrossRef] [Google Scholar]
  16. M. Hou, P.C. Muller, Design of observers for linear systems with unknown inputs, IEEE Trans. Automat. Control 37 (1992) 871–875 [CrossRef] [Google Scholar]
  17. D. Söffker, T.J. YU, P.C. Muller, State estimation of dynamical system with nonlinearities by using PI observer, Int. J. Syst. Sci. 26 (1995) 1571–1582 [Google Scholar]
  18. I. Krajcin, D. Söffker, Model-based estimation of contact forces in rotating machines, in Proceedings of the 4th Symposium on Mathematical Modeling, Vienna University of Technology, Austria, February 2003 [Google Scholar]
  19. I. Krajcin, D. Söffker, Diagnosis and Control of 3D Elastic Mechanical Structures, in Proceedings of the 12th SPIE Symposium on Smart Structures and Materials, San, Diego, CA, March 2005 [Google Scholar]
  20. S.Q. Zhang, H.N. Li, R. Schmidt, P.C. Müller, Disturbance rejection control for vibration suppression of piezoelectric laminated thin-walled structures, J. Sound Vib. 333 (2014) 1209–1223 [Google Scholar]
  21. S.Q. Zhang, H.N. Li, R. Schmidt, P.C. Müller, X.S. Qin, Disturbance rejection control for vibration suppression of smart beam and plates under a high frequency excitation, J. Sound Vib. 353 (2015) 19–37 [Google Scholar]
  22. M. Michu, A. Berry, P.H.P. Micheau, Bending near field compensation in the context of vibroacoustic, active control, Mechanics & Industry 15 (2014) 551–555 [CrossRef] [EDP Sciences] [Google Scholar]
  23. L. Rubbert, P. Renaud, S.C.J. Gangloff, Design of a compensation mechanism for an active cardiac stabilizer based on an assembly of planar compliant mechanisms, Mechanics & Industry 15 (2014) 147–151 [CrossRef] [EDP Sciences] [Google Scholar]
  24. S. Kerroumi, Dynamic classification method of fault indicators for bearings' monitoring, Mechanics & Industry 14 (2013) 115–120 [CrossRef] [EDP Sciences] [Google Scholar]
  25. S. Chesne, C. Pezerat, Distributed piezoelectric sensors for boundary force measurements in Euler-Bernoulli beams, Smart Mater. Struct. 20 (2011) 075009 [Google Scholar]
  26. O. Katsuhiko, Discrete-Time Control Systems, 2nd Edition, Prentice Hall, Upper Saddle River, NJ, 1995 [Google Scholar]
  27. M.S. Grewal, A.P. Andrews, Kalman Filtering Theory and Practice Using MATLAB, 4th Edition, John Wiley & Sons, Inc., New York, 2014 [Google Scholar]
  28. Y. Bar-Shalom, X. Rong Li, T. Kirubarajan, Estimation with Application to Tracking and Navigation: Theory Algorithms and Software, John Wiley & Sons, Inc., New York, 2001 [CrossRef] [Google Scholar]
  29. S.Q. Zhang, R. Schmidt, X.S. Qin, Active vibration control of piezoelectric bonded smart structures using PID algorithm, Chin. J. Aeronaut. 28 (2015) 305–313 [CrossRef] [Google Scholar]
  30. S.Q. Zhang, Y.X. Li, R. Schmidt, Modeling and simulation of macro-fiber composite layered smart structures, Compos. Struct. 126 (2015) 89–100 [Google Scholar]
  31. D.F. Gatz, L. Smith, The standard error of a weighted mean concentration bootstrapping vs other methods, Atmos. Environ. 29 (1995) 1185–1193 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.