Open Access
Mechanics & Industry
Volume 19, Number 5, 2018
Article Number 504
Number of page(s) 11
Published online 19 December 2018
  1. S.B. Pope, PDF methods for turbulent reactive flows, Prog. Energy Combust. Sci. 11 (1985) 119–193 [Google Scholar]
  2. D.C. Haworth, Progress in probability density function methods for turbulent reacting flows, Prog. Energy Combust. Sci. 36 (2010) 168–259 [Google Scholar]
  3. R. Cabra, J.Y. Chen, R.W. Dibble, Y. Hamano, A.N. Karpetis, R.S. Barlow, Simultaneous Raman-Reyleigh-LIF measurements and numerical modeling results of a lifted H2/N2 turbulent jet flame in a vitiated coflow, NASA Rep. 212081 (2002) 1881–1888 [Google Scholar]
  4. V. Saxena, S.B. Pope, PDF calculations of major and minor species in a turbulent piloted jet flame, Symp. Combust. 27 (1998) 1081–1086 [CrossRef] [Google Scholar]
  5. M. Muradoglu, S.B. Pope, D.A. Caughey, The hybrid method for the pdf equations of turbulent reactive flows: consistency conditions and correction algorithms, J. Comp. Phys. 172 (2001) 841–878 [CrossRef] [Google Scholar]
  6. M. Muradoglu, K. Liu, S.B. Pope, PDF modeling of a bluff-body stabilized turbulent flame, Combust. Flame 132 (2003) 115–137 [Google Scholar]
  7. R. Cabra, J.Y. Chen, R.W. Dibble, A.N. Karpetis, R.S. Barlow, Lifted methane-air jet flames in a vitiated coflow, Combust. Flame 143 (2005) 491–506 [Google Scholar]
  8. R. Cao, S.B. Pope, Numerical integration of stochastic differential equations: weak second-order mid-point scheme for application in the composition PDF method, J. Comput. Phys. 185 (2003) 194–212 [Google Scholar]
  9. A.R. Masri, R.R. Cao, S.B. Pope, G.M. Goldin, PDF calculations of turbulent lifted flames of H2/N2 fuel issuing into a vitiated co-flow. Combust. Theory Model. 8 (2004) 1–22 [CrossRef] [Google Scholar]
  10. K. Liu, S.B. Pope, D.A. Caughey, Calculations of bluff-body stabilized flames using a joint probability density function model with detailed chemistry, Combust. Flame 141 (2005) 89–117 [Google Scholar]
  11. R.L. Gordon, A.R. Masri, S.B. Pope, G.M. Goldin, Transport budgets in turbulent lifted flames of methane autoigniting in a vitiated co-flow, Combust. Flame 151 (2007) 495–511 [Google Scholar]
  12. R.R. Cao, S.B. Pope, A.R. Masri, Turbulent lifted flames in a vitiated coflow investigated using joint PDF calculations, Combust. Flame 142 (2005) 438–453 [Google Scholar]
  13. R.R. Cao, H. Wang, S.B. Pope, The effect of mixing models in PDF calculations of piloted jet flames, Proc. Combust. Inst. 31 (2007) 1543–1550 [Google Scholar]
  14. M. Senouci, A. Bounif, M. Abidat, N.M. Belkaid, C. Mansour, I. Gokalp, Transported-PDF (IEM, EMST) micromixing models in a hydrogen-air nonpremixed turbulent flame, Acta Mech. 224 (2013) 3111–3124 [Google Scholar]
  15. R.O. Fox, A. Varma, Computational models for turbulent reacting flows, Cambridge Univ. Press (2003) [CrossRef] [Google Scholar]
  16. Q. Tang, W. Zhao, M. Bockelie, R.O. Fox, Multi-environment probability density function method for modelling turbulent combustion using realistic chemical kinetics, Combust. Theory Model. 11 (2007) 889–907 [CrossRef] [Google Scholar]
  17. J. Akroyd, A.J. Smith, L.R. Mcglashan, M. Kraft, Numerical investigation of DQMoM-IEM as a turbulent reaction closure, Chem. Eng. Sci. 65 (2010) 1915–1924 [Google Scholar]
  18. R. Yadav, A. Kushari, A. De, Modeling of turbulent lifted flames in vitiated co-flow using multi environment Eulerian PDF transport approach, Heat Mass Transf. 77 (2014) 230–246 [Google Scholar]
  19. R. Yadav, A. Kushari, V. Eswaran, A.K. Verma, A numerical investigation of the Eulerian PDF transport approach for modeling of turbulent non-premixed pilot stabilized flames, Combust. Flame 160 (2013) 618–634 [Google Scholar]
  20. A. Dongre, A. De, R. Yadav, Numerical investigation of MILD combustion using multi-environment Eulerian probability density function modeling, Inter. J. Spray Combust. Dyn. 6 (2014) 357–386 [CrossRef] [Google Scholar]
  21. H. Möbus, P. Gerlinger, D. Brüggemann, Comparison of Eulerian and Lagrangian Monte Carlo PDF methods for turbulent diffusion flames, Combust. Flame 124 (2001) 519–534 [Google Scholar]
  22. J. Jaishree, D.C. Haworth, Comparisons of Lagrangian and Eulerian PDF methods in simulations of non- premixed turbulent jet flames with chemistry interactions, Combust. Theory Model. 16 (2012) 435–463 [CrossRef] [Google Scholar]
  23. A.A. Larbi, A. Bounif, M. Bouzit, Comparisons of LPDF and MEPDF for lifted H2/N2 jet flame in a vitiated coflow, Inter. J. Heat Technol. 36 (2018) 133–140 [CrossRef] [Google Scholar]
  24. R.O. Fox, Computational models for turbulent reacting flows, Chem. Eng. 51 (2003) 215–243 [Google Scholar]
  25. S.B. Pope, Lagrangian PDF methods for turbulent flows, Annu. Rev. Fluid Mech. 26 (1994) 23–63 [Google Scholar]
  26. D.L. Marchisio, R.O. Fox, Solution of population balance equations using the direct quadrature method of moments, J. Aerosol Sci. 36 (2005) 43–73 [Google Scholar]
  27. B.E. Launder, D.B. Spalding, The numerical computation of turbulent flows, in: Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion, Elsevier, 1983, pp. 96–116 [CrossRef] [Google Scholar]
  28. S.B. Pope, Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation, Combust. Theory Model. 1 (1997) 41–63 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.