Free Access
Issue
Mechanics & Industry
Volume 19, Number 5, 2018
Article Number 501
Number of page(s) 11
DOI https://doi.org/10.1051/meca/2018031
Published online 03 December 2018
  1. N.H. Kacem, N. Haddar, R. Elleuch, Failure analysis of an automotive shock absorber cup during manufacturing process, Mechanics & Industry 17 (2016) 604 [CrossRef] [EDP Sciences] [Google Scholar]
  2. L.B. Said, J. Mars, M. Wali, F. Dammak, Effects of the tool path strategies on incremental sheet metal forming process, Mechanics & Industry 17 (2016) 411 [CrossRef] [EDP Sciences] [Google Scholar]
  3. E.d.S. Neto, D. Peric, D. Owen, Computational methods for plasticity: theory and applications, Wiley, Chichester, 2008 [CrossRef] [Google Scholar]
  4. R. Hill, A theory of the yielding and plastic flow of anisotropic metals, Proc. R. Soc. Lond. A 193 (1948) 281–297 [CrossRef] [Google Scholar]
  5. F. Barlat, J. Lian, Plastic behavior and stretchability of sheet metals. Part I: a yield function for orthotropic sheets under plane stress conditions, Int. J. Plast. 5 (1989) 51–66 [CrossRef] [Google Scholar]
  6. F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S.H. Choi, E. Chu, Plane stress yield function for aluminum alloy sheets–part 1: theory, Int. J. Plast. 19 (2003) 1297–1319 [CrossRef] [Google Scholar]
  7. Y. Wang, S. Coppieters, P. Lava, D. Debruyne, Anisotropic yield surface identification of sheet metal through stereo finite element model updating, J. Strain Anal. Eng. Des. 51 (2016) 598–611 [Google Scholar]
  8. N. Hedayati, R. Madoliat, R. Hashemi, Strain measurement and determining coefficient of plastic anisotropy using digital image correlation (DIC), Mechanics & Industry 18 (2017) 311 [CrossRef] [EDP Sciences] [Google Scholar]
  9. S.S. Panicker, S. Kumar Panda, Improvement in material flow during nonisothermal warm deep drawing of nonheat treatable aluminum alloy sheets, J. Manuf. Sci. Eng. 139 (2016) 031013 [Google Scholar]
  10. M.-G. Lee, D. Kim, C. Kim, M.L. Wenner, R.H. Wagoner, K. Chung, Spring-back evaluation of automotive sheets based on isotropic-kinematic hardening laws and non-quadratic anisotropic yield functions, Int. J. Plast. 21 (2005) 883–914 [Google Scholar]
  11. M.-G. Lee, D. Kim, C. Kim, M.L. Wenner, K. Chung, Spring-back evaluation of automotive sheets based on isotropic-kinematic hardening laws and non-quadratic anisotropic yield functions, part III: applications, Int. J. Plast. 21 (2005) 915–953 [CrossRef] [Google Scholar]
  12. S. Kim, J. Lee, F. Barlat, M.-G. Lee, Formability prediction of advanced high strength steels using constitutive models characterized by uniaxial and biaxial experiments, J. Mater. Process. Technol. 213 (2013) 1929–1942 [CrossRef] [Google Scholar]
  13. T. Kuwabara, T. Mori, M. Asano, T. Hakoyama, F. Barlat, Material modeling of 6016-O and 6016-T4 aluminum alloy sheets and application to hole expansion forming simulation, Int. J. Plast. 93 (2017) 164–186 [CrossRef] [Google Scholar]
  14. H. Tian, B. Brownell, M. Baral, Y.P. Korkolis, Earing in cup-drawing of anisotropic Al-6022-T4 sheets, Int. J. Mater. Form. 10 (2016) 329–343 [CrossRef] [Google Scholar]
  15. H.J. Choi, K.J. Lee, Y. Choi, G. Bae, D.C. Ahn, M.G. Lee, Effect of evolutionary anisotropy on earing prediction in cylindrical cup drawing, JOM 69 (2017) 915–921 [CrossRef] [Google Scholar]
  16. K. Charoensuk, S. Panich, V. Uthaisangsuk, Damage initiation and fracture loci for advanced high strength steel sheets taking into account anisotropic behaviour, J. Mater. Process. Technol. 248 (2017) 218–235 [CrossRef] [Google Scholar]
  17. M. Rossi, F. Pierron, M. Štamborská, Application of the virtual fields method to large strain anisotropic plasticity, Int. J. Solids Struct. 97–98 (2016) 322–335 [Google Scholar]
  18. R. Bagheriasl, K. Ghavam, M.J. Worswick, Formability improvement with independent die and punch temperature control, Int. J. Mater. Form. 7 (2014) 139–154 [CrossRef] [Google Scholar]
  19. K. Ghavam, R. Bagheriasl, M.J. Worswick, Analysis of nonisothermal deep drawing of aluminum alloy sheet with induced anisotropy and rate sensitivity at elevated temperatures, J. Manuf. Sci. Eng. 136 (2013) 011006 [Google Scholar]
  20. N. Abedrabbo, F. Pourboghrat, J. Carsley, Forming of AA5182-O and AA5754-O at elevated temperatures using coupled thermo-mechanical finite element models, Int. J. Plast. 23 (2007) 841–875 [CrossRef] [Google Scholar]
  21. Z. Cai, M. Wan, Z. Liu, X. Wu, B. Ma, C. Cheng, Thermal-mechanical behaviors of dual-phase steel sheet under warm-forming conditions, Int. J. Mech. Sci. 126 (2017) 79–94 [CrossRef] [Google Scholar]
  22. M. G. Lee, C. Kim, E. J. Pavlina, F. Barlat, Advances in sheet forming—materials modeling, numerical simulation, and press technologies, J. Manuf. Sci. Eng. 133 (2011) 061001 [Google Scholar]
  23. R.D. Bors, P.H. Feenstra, Studies on anisotropic plasticity with reference to the Hill criterion, Int. J. Numer. Methods Eng. 29 (1990) 315–336 [Google Scholar]
  24. M. Dutko, D. Peric, D.R.J. Owen, Universal anisotropic yield criterion based on superquadric functional representation: Part 1. Algorithmic issues andaccuracy analysis, Comput. Methods Appl. Mech. Eng. 109 (1993) 73–93 [Google Scholar]
  25. W.M. Scherzinger, A return mapping algorithm for isotropic and anisotropic plasticity models using a line search method, Comput. Methods Appl. Mech. Eng. 317 (2017) 526–553 [Google Scholar]
  26. A. Pérez-Foguet, F. Armero, On the formulation of closest-point projection algorithms in elastoplasticity-part II: globally convergent schemes, Int. J. Numer. Methods Eng. 53 (2002) 331–374 [Google Scholar]
  27. F. Barlat, H. Aretz, J.W. Yoon, M.E. Karabin, J.C. Brem, R.E. Dick, Linear transfomation-based anisotropic yield functions, Int. J. Plast. 21 (2005) 1009–1039 [CrossRef] [Google Scholar]
  28. F. Barlat, Y. Maeda, K. Chung, M. Yanagawa, J.C. Brem, Y. Hayashida, D.J. Lege, K. Matsui, S.J. Murtha, S. Hattori, R.C. Becker, S. Makosey, Yield function development for aluminum alloy sheets, J. Mech. Phys. Solids 45 (1997) 1727–1763 [Google Scholar]
  29. P. Peters, N. Manopulo, C. Lange, P. Hora, A strain rate dependent anisotropic hardening model and its validation through deep drawing experiments, Int. J. Mater. Form. 7 (2013) 447–457 [CrossRef] [Google Scholar]
  30. J.-W. Yoon, F. Barlat, R.E. Dick, K. Chung, T.J. Kang, Plane stress yield function for aluminum alloy sheets–part II: FE formulation and its implementation, Int. J. Plast. 20 (2004) 495–522 [CrossRef] [Google Scholar]
  31. M. Safaei, J.W. Yoon, W. De Waele, Study on the definition of equivalent plastic strain under non-associated flow rule for finite element formulation, Int. J. Plast. 58 (2014) 219–238 [CrossRef] [Google Scholar]
  32. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical recipes, Cambridge Unidersity, New York, 1986 [Google Scholar]
  33. M.C. Butuc, F. Barlat, J.J. Gracio, Study on plastic flow localization prediction using a physically-based hardening model, Comput. Mater. Sci. 50 (2011) 2688–2697 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.