Open Access
Mechanics & Industry
Volume 19, Number 5, 2018
Article Number 502
Number of page(s) 11
Published online 14 December 2018
  1. L.R.G. Treloar, The physics of rubber elasticity, Oxford University Press, 1975 [Google Scholar]
  2. W.N. Findley, F.A. Davis, Creep and relaxation of nonlinear viscoelastic materials, Courier Corporation, 2013 [Google Scholar]
  3. A.G. James, A. Green, G.M. Simpson, Strain energy functions of rubber. I. Characterization of gum vulcanizates, J. Appl. Polym. Sci. 19 (1975) 2033–2058 [Google Scholar]
  4. R.W. Ogden, Non-linear elastic deformations, Courier Corporation, 1997 [Google Scholar]
  5. F.J. Lockett, Creep and stress-relaxation experiments for non-linear materials, Int. J. Eng. Sci. 3 (1965) 59–75 [Google Scholar]
  6. R.A. Schapery, A theory of non-linear thermoviscoelasticity based on irreversible thermodynamics, in: 5th Nat. Cong. Appl. Mech., ASME, New York, 1966, pp. 511–530 [Google Scholar]
  7. K.C. Valanis, Unified theory of thermomechanical behavior of viscoelastic materials, in Procceding of Symposium Mechanical behavior of materials under dynamic loads, Springer, Texas, 1968, pp. 343–364 [CrossRef] [Google Scholar]
  8. R.M. Christensen, L. Freund, Theory of viscoelasticity, J. Appl. Mech. 38 (1971) 720 [Google Scholar]
  9. A. Amin, A. Lion, S. Sekita, Y. Okui, Nonlinear dependence of viscosity in modeling the rate-dependent response of natural and high damping rubbers in compression and shear: Experimental identification and numerical verification, Int. J. Plast. 22 (2006) 1610–1657 [CrossRef] [Google Scholar]
  10. B.D. Coleman, W. Noll, Foundations of linear viscoelasticity, Rev. Mod. Phys. 33 (1961) 239 [Google Scholar]
  11. M. Green, A. Tobolsky, A new approach to the theory of relaxing polymeric media, J. Chem. Phys. 14 (1946) 80–92 [Google Scholar]
  12. F. Sidoroff, Variables internes en viscoélasticité i. variables internes scalaires et tensorielles, J. Méc. 14 (1975) 545–566 [Google Scholar]
  13. F. Sidoroff, Variables internes en viscoélasticité, 2. milieux avec configuration intermédiaire, J. Méc. 14 (1975) 571–595 [Google Scholar]
  14. J. Sullivan, K. Mazich, Nonseparable behavior in rubber viscoelasticity, Rubber Chem. Technol. 62 (1989) 68– 81 [CrossRef] [Google Scholar]
  15. Y. Kwon, K.S. Cho, Time-strain nonseparability in viscoelastic constitutive equations, J. Rheol. (1978-present) 45 (2001) 1441–1452 [CrossRef] [Google Scholar]
  16. J. Ciambella, A. Paolone, S. Vidoli, A comparison of nonlinear integral-based viscoelastic models through compression tests on filled rubber, Mech. Mater. 42 (2010) 932–944 [Google Scholar]
  17. R.M. Christensen, A nonlinear theory of viscoelasticity for application to elastomers, J. Appl. Mech. 47 (1980) 762– 768 [Google Scholar]
  18. R. Fosdick, J.-H. Yu, Thermodynamics, stability and non-linear oscillations of viscoelastic solids II. History type solids, Int. J. Non-linear Mech. 33 (1998) 165–188 [CrossRef] [Google Scholar]
  19. J.C. Simo, On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects, Comput. Methods Appl. Mech. Eng. 60 (1987) 153–173 [Google Scholar]
  20. H. Bechir, A. Kaci, Comparaison du module complexe d'Young résultant de deux différents modèles visco-hyper-élastiques, Rhéologie 6 (2004) 25–30 [Google Scholar]
  21. D.J. Charlton, J. Yang, K.K. Teh, A review of methods to characterize rubber elastic behavior for use in finite element analysis, Rubber Chem. Technol. 67 (1994) 481–503 [CrossRef] [Google Scholar]
  22. A. Lion, C. Kardelky, The Payne effect in finite viscoelasticity: constitutive modelling based on fractional derivatives and intrinsic time scales, Int. J. Plast. 20 (2004) pp. 1313–134. [CrossRef] [Google Scholar]
  23. D. Wollscheid, A. Lion, Predeformation-and frequency-dependent material behaviour of filler-reinforced rubber: Experiments, constitutive modelling and parameter identification, Int. J. Solids Struct. 50 (2013) 1217–1225 [Google Scholar]
  24. N.W. Tschoegl, The phenomenological theory of linear viscoelastic behavior: an introduction, Springer Science and Business Media, 2012 [Google Scholar]
  25. J.L. Sullivan, Viscoelastic properties of a gum vulcanizate at large static deformations, J. Appl. Polymer Sci. 28 (1983) 1993–2003 [CrossRef] [Google Scholar]
  26. A.R. Payne, R.E. Whittaker, Dynamic properties of materials, Rheologica Acta 9 (1970) 97–102 [Google Scholar]
  27. M. Rendek, A. Lion, Amplitude dependence of filler-reinforced rubber: Experiments, constitutive modelling and FEM Implementation, Int. J. Solids Struct. 47 (2010) 2918–2936 [Google Scholar]
  28. R. Bloch, W. Chang, N. Tschoegl, Strain independent nonlinearity in peroxide-cured styrene-butadiene rubber, J. Rheol. (1978-present) 22 (1978) 33–51 [CrossRef] [Google Scholar]
  29. Abaqus Theory Manual, version 6.14, section 4.8.2 [Google Scholar]
  30. E. Yang, Phenomenological Constitutive Models for Dielectric Elastomer Membranes for Artificial Muscle Applications, Thesis, 2006 [Google Scholar]
  31. J. C. Simo, T. J. Hughes, Computational inelasticity, Vol. 7. Springer Science and Business Media, 2006 [Google Scholar]
  32. R. Christensen, Theory of viscoelasticity: an introduction, Academic Press, NewYork, 1971 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.