Open Access
Issue
Mechanics & Industry
Volume 19, Number 6, 2018
Article Number 601
Number of page(s) 8
DOI https://doi.org/10.1051/meca/2018037
Published online 18 January 2019
  1. S.J. Chen, A.A. Tseng, Spray and jet cooling in steel rolling, Int. J. Heat Fluid Flow 13 (1982) 358–369 [Google Scholar]
  2. S.J. Chen, J. Kothari, A.A. Tseng, Cooling of a moving plate with an impinging circular water jet, Exp. Therm. Fluid Sci. 4 (1991) 343–353 [CrossRef] [Google Scholar]
  3. J.H. Seo, C.J. Van Tyne, Y.H. Moon, Effect of roll configuration on the leveling effectiveness of tail-up bent plate using finite element analysis, J. Manuf. Sci. Eng. 138 (2016) 1–7 [Google Scholar]
  4. N. Karwa, P. Stephen, Experimental investigation of free-surface jet impingement quenching process, Int. J. Heat Mass Transf. 64 (2013) 1118–1126 [Google Scholar]
  5. Y.H. Moon, D.W. Kim, C.J. Van Tyne, Analytical model for prediction of sidewall curl during stretch-bend sheet metal forming, Int. J. Mech. Sci. 50 (2008) 666–675 [CrossRef] [Google Scholar]
  6. S.M. Byon, S.R. Kim, T.Y. Kim, Y.S. Lee, An approximate model to predict the surface profile of material sections in a 3-roll rolling process, J. Mech. Sci. Technol. 31 (2017) 3489–3497 [CrossRef] [Google Scholar]
  7. H.K. Yi, D.W. Kim, C.J. Van Tyne, Y.H. Moon, Analytical prediction of springback based on residual differential strain during sheet metal bending, J. Mech. Eng. Sci. 222 (2008) 117–129 [CrossRef] [Google Scholar]
  8. X. Wang, Q. Yang, A. He, Calculation of thermal stress affecting strip flatness change during run-out table cooling in hot steel strip rolling, J. Mater. Process. Technol. 207 (2008) 130–146 [CrossRef] [Google Scholar]
  9. T.D. Kil, J.M. Lee, Y.H. Moon, Quantitative formability estimation of ring rolling process by using deformation processing map, J. Mater. Process. Technol. 220 (2015) 224–230 [CrossRef] [Google Scholar]
  10. A.H. Nobara, V. Prodanovic, M. Militzer, Heat transfer of a stationary steel plate during water jet impingement cooling, Int. J. Heat Mass Transf. 101 (2016) 1138–1150 [Google Scholar]
  11. M.L. Hosain, R.B. Fdhila, A. Daneryd, Heat transfer by liquid jets impinging on a hot flat surface, Appl. Energy 164 (2016) 934–943 [Google Scholar]
  12. G. Jia, M. Cai, Y. Shi, W. Xu, The experimental analysis of the water spray cooling compressed air, Mechanics & Industry 18 (2017) 211 [CrossRef] [EDP Sciences] [Google Scholar]
  13. Q. Guo, Z. Wen, R. Dou, Experimental and numerical study on the transient heat transfer characteristics of circular air-jet impingement on a flat plate, Int. J. Heat Mass Transf. 104 (2017) 1177–1188 [Google Scholar]
  14. H. Martin, Heat and mass transfer between impinging gas jets and solid surfaces, Adv. Heat Transf. 13 (1977) 1–60 [Google Scholar]
  15. K. Jambunathan, E. Lai, M.A. Moss, B.L. Button, A review of heat transfer data for single circular jet impingement, Int. J. Heat Fluid Flow 13 (1992) 106–115 [Google Scholar]
  16. N. Zuckerman, N. Lior, Jet impingement heat transfer: physics, correlations, and numerical modeling, Adv. Heat Transf. 39 (2006) 565–631 [CrossRef] [Google Scholar]
  17. Y.T. Ren, X.M. Qiu, T.X. Yu, Verification of a theoretical model of tensor skin under water impact by considering the fluid-structure interaction, Int. J. Impact Eng. 92 (2016) 66–74 [Google Scholar]
  18. M. Ahsan, A. Hussain, A computational fluid dynamics (CFD) approach for the modeling of flux in a polymeric membrane using finite volume method, Mech. Ind. 18 (2017) 406 [CrossRef] [Google Scholar]
  19. X. Wang, F. Li, Q. Yang, A. He, FEM analysis for residual stress prediction in hot rolled steel strip during the run-out table cooling, Appl. Math. Model. 37 (2013) 586–609 [Google Scholar]
  20. A. Malik, R.V. Grandhi, A computational method to predict strip profile in rolling mills, J. Mater. Process. Technol. 206 (2008) 263–274 [CrossRef] [Google Scholar]
  21. A. Kaliazine, M. Eslamian, N.H. Tran, On the failure of a brittle material by high velocity gas jet impact, Int. J. Impact Eng. 37 (2010) 131–140 [Google Scholar]
  22. Y. Lu, F. Huang, X. Liu, X. Ao, On the failure pattern of sandstone impacted by high-velocity water jet, Int. J. Impact Eng.r 76 (2015) 67–74 [Google Scholar]
  23. S.M. Salim, S. Cheah, Wall y + strategy for dealing with wall-bounded turbulent flows, Proceedings of the International MultiConference of Engineers and Computer Scientists, Hong Kong, China (2009) [Google Scholar]
  24. D. Singh, B. Premachandran, S. Kohli, Double circular air jet impingement cooling of a heated circular cylinder, Int. J. Heat Mass Transf. 109 (2017) 619–646 [Google Scholar]
  25. H.N. Han, J.K. Lee, H.J. Kim, Y.S. Jin, A model for deformation, temperature and phase transformation behavior of steels on run-out table in hot strip mill, J. Mater. Process. Technol. 128 (2002) 216–225 [CrossRef] [Google Scholar]
  26. H. Wang, W. Yu, Q. Cai, Experimental study of heat transfer coefficient on hot steel plate during water jet impingement cooling, J. Mater. Process. Technol. 212 (2012) 1825–1831 [CrossRef] [Google Scholar]
  27. D. Singh, B. Premachandran, S. Kohli, Effect of nozzle shape on jet impingement heat transfer from a circular cylinder, Int. J. Therm. Sci. 96 (2015) 45–69 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.