Free Access
Issue
Mechanics & Industry
Volume 19, Number 6, 2018
Article Number 602
Number of page(s) 11
DOI https://doi.org/10.1051/meca/2018039
Published online 18 January 2019
  1. K. Liu, J. Liu, The damped dynamic vibration absorbers: revisited and new result, J. Sound Vib. 284 (2005) 1181–1189 [Google Scholar]
  2. C.L. Lee, Y.T. Chen, L.L. Chung, Y.P. Wang, Optimal design theories and applications of tuned mass dampers, Eng. Struct. 28 (2006) 43–53 [Google Scholar]
  3. I. Lopez, J.M. Busturia, H. Nijmeijer, Energy dissipation of a friction damper, J. Sound Vib. 278 (2004) 474–479 [Google Scholar]
  4. M. Wang, T. Zan, Y. Yang, R. Fei, Design and implementation of nonlinear TMD for chatter suppression: an application in turning processes, Int. J. Mach. Tools Manuf. 50 (2010) 74–96 [Google Scholar]
  5. D. Brizard, S. Besset, L. Jézéquel, B. Troclet, Design and test of a friction damper to reduce engine vibrations on a space launcher, Arch. Appl. Mech. 83 (2013) 799–815 [CrossRef] [Google Scholar]
  6. S. Andersson, A. Soderberg, S. Bjorklund, Friction models for sliding dry, boundary and mixed lubricated contacts, Tribol. Int. 40 (2007) 580–587 [Google Scholar]
  7. G.J. Stein, Dry friction modeling and simulation in kinematically excited oscillatory systems, J. Sound Vib. 311 (2008) 74–96 [Google Scholar]
  8. N. Bouchaala, Impact des défauts géométriques sur l'amortissement dans les assemblages, THESE, école nationales des ingénieurs de Sfax, janvier 2014. [Google Scholar]
  9. H. Olsson, K.J. Åström, C. Canudas de Wit, M. Gäfvert, P. Lischinsky, Friction models and friction compensation, Eur. J. Control 4 (1998), 176–195. [CrossRef] [Google Scholar]
  10. E.J. Berger, Friction modeling for dynamic system simulation, Appl. Mech. Rev. 55 (2002) 535–577. [Google Scholar]
  11. J. Awrejcewiczan, P. Olejnik, Analysis of dynamic systems with various friction laws, Appl. Mech. Rev. 58 (2005) 389–411 [Google Scholar]
  12. D. Chou, Dahl Friction Modeling, Massachusetts Institute of Technology, June 2004. [Google Scholar]
  13. C. Canudas de Wit, H. Olsson, K.J. Astrom, P. Lischinsky, A new model for control of systems with friction, IEEE Trans. Autom. Control, 40 (1995) 419–425 [CrossRef] [Google Scholar]
  14. C. Mrad, K. Chehaibi, A. Nasr, R. Nasri, Modeling effect on the performance of impact and friction vibration absorbers, Mechanics & Industry 18 (2017) 206 [CrossRef] [EDP Sciences] [Google Scholar]
  15. J.P. Den Hartog, Mechanical Vibrations, McGraw-Hill, New York (1956) [Google Scholar]
  16. J.E. Brock, A note on the damped vibration absorber, J. Appl. Mech. 68 (1946) A-284. [Google Scholar]
  17. E. Pennestrì, An application of Chebyshev's min-max criterion to the optimal design of a damped dynamic vibration absorber, J. Sound Vib. 217 (1998) 757–765 [Google Scholar]
  18. M.A. Abdel-Hafiz, G.A. Hassaan, Minimax optimization of dynamic pendulum absorbers for a damped primary system, Int. J. Sci. Technol. Res. 3 (2014) 209–215 [Google Scholar]
  19. M.A. Louroza, N. Roitman, C. Magluta, Vibration reduction using passive absorption system with Coulomb damping, Mech. Syst. Signal Process. 19 (2005) 537–549 [Google Scholar]
  20. Z. Gewei, B. Basu, A study on friction-tuned mass damper: harmonic solution and statistical linearization, J. Vib. Control 17 (2011) 721–731 [Google Scholar]
  21. F. Ricciardelli, B. Vickery, Tuned vibration absorbers with dry friction damping, Earthq. Eng. Struct. Dyn. 28 (1999) 707–723 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.