Mechanics & Industry
Volume 19, Number 7, 2018
STANKIN: High-efficiency machining of innovative materials
Article Number 702
Number of page(s) 14
Published online 08 February 2019
  1. A.B. Markov, E.V. Yakovlev, V.I. Petrov, Formation of surface alloys with a low-energy high-current electron beam for improving high-voltage hold-off of copper electrodes, IEEE Trans. Plasma Sci. 41 (2013) 2177–2182. [CrossRef] [Google Scholar]
  2. S.V. Fedorov, G.V. Oganyan, Special features of electron-beam alloying of replaceable polyhedral hard-alloy plates under a complex surface treatment, Metal Sci. Heat Treat. 57 (2016) 620–624. [CrossRef] [Google Scholar]
  3. S. Fedorov, Min Htet Swe, Wear of carbide inserts with complex surface treatment when milling nickel alloy, Mechanics & Industry 18 (2017) 710. [CrossRef] [EDP Sciences] [Google Scholar]
  4. S.V. Fedorov, S.V. Aleshin, M.H. Swe, Comprehensive surface treatment of high speed steel tool, Mechanics & Industry 18 (2017) 711. [CrossRef] [EDP Sciences] [Google Scholar]
  5. S.V. Fedorov, M.H. Swe, Refractory phases synthesis at the surface microalloying using а wide aperture electron beam, J. Phys. Conf. Series 830 (2017) 012076. [CrossRef] [Google Scholar]
  6. D.S. Nazarov, V.P. Rotshtein, D.I. Proskurovsky, A.B. Markov, Pulsed electron-beam technology for surface modification of metallic materials, J. Vac. Sci. Technol. 16 (1998) 2480–2488. [CrossRef] [Google Scholar]
  7. M.I. Dvornik, A.V. Zaitsev, Destruction of hard alloy VK8 with termodom, Mech. Adv. Mater. Struct. 15 (2009) 52–58. [Google Scholar]
  8. O.A. Capetolo, V.S. Zanuto, G.V.B. Lukasievicz, L.C. Malacarne, Generation and detection of thermoelastic waves in metals by a photothermal mirror method, Appl. Phys. Lett. 109 (2016) 1.91908. [Google Scholar]
  9. X. Wang, X. Xu, Thermoelastic wave induced by pulsed laser heating, Appl. Phys. A 73 (2001) 107–114. [CrossRef] [Google Scholar]
  10. V.V. Uglov, N.N. Kowal, A.K. Kuleshov, Y.F. Ivanov, A.D. Interest, E.A. Soldatenko, Structure-phase transformation in surface layers of hard alloy as a result of action of high current electron beams, Surf. X-ray Synch. Neutron Stud. 4 (2011) 50–58. [Google Scholar]
  11. T.V. Vahniy, G.A. Vershinin, G.I. Gering, N.I. Pischasov, Enhanced mass transfer under pulsed effects on metal systems, Bull. Omsk Univ. 3 (2003) 28–30. [Google Scholar]
  12. G.A. Vershinin, V.A. Volkov, G.L. Buchbinder, G.I. Gering, Local nonequilibrium mass transfer in a two-component system under external pulsed irradiation with energy fluxes, J. Surf. Investig. 8 (2014) 712–716. [CrossRef] [Google Scholar]
  13. N.A. Pischasov, A.V. Nikolaev, Modification of the structure and properties of hard alloys of WC-Co system by high-current charged particle beams, Bull. Omsk Univ. 2 (1996) 39–43. [Google Scholar]
  14. S. Konovalov, X. Chen, V. Sarychev, S. Nevskii, V. Gromov, M. Trtica, Mathematical modeling of the concentrated energy flow effect on metallic materials, Metals 7 (2017) 4. [Google Scholar]
  15. G.E. Ozur, D.I. Proskurovsky, V.P. Rotshtein, A.B. Markov, Production and application of low-energy, high-current electron beams, Laser Part. Beams 21 (2003) 157–174. [CrossRef] [Google Scholar]
  16. S.N. Grigoriev, V.A. Sinopalnikov, M.V. Tereshin, Control of parameters of the cutting process on the basis of diagnostics of the machine tool and workpiece, Meas. Techn. 55 (2012) 555–558. [Google Scholar]
  17. S.N. Grigoriev, M.P. Kozochkin, E. Yu. Kropotkina, Study of wire tool-electrode behavior during electrical discharge machining by vibroacoustic monitoring, Mechanics & Industry 17 (2016) 717. [CrossRef] [EDP Sciences] [Google Scholar]
  18. S.N. Grigoriev, M.P. Kozochkin, F.S. Sabirov, Diagnostic systems as basis for technological improvement, in: K. Wegener (Ed.), 5th CIRP International Conference on High Performance Cutting, Zurich, Switzerland, June 4–7, 2012, Elsevier, New York, 2012. [Google Scholar]
  19. S.N. Grigoriev, V.D. Gurin, M.A. Volosova, Development of residual cutting tool life prediction algorithm by processing on CNC machine tool, Materialwiss. Werksttech 44 (2013) 790–796. [Google Scholar]
  20. N.A. Semashko, V.I. Shport, B.N. Marin, Acoustic emission in experimental materials science, Mechanical Engineering, Moscow, 2002. [Google Scholar]
  21. F. Su, T. Li, X. Pan, M. Miao, Acoustic emission responses of three typical metals during plastic and creep deformations, Exp. Tech. 42 (2018) 685–691. [Google Scholar]
  22. C. Barile, C. Casavola, G. Pappalettera, C. Pappalettere, Acoustic emission analysis of aluminum specimen subjected to laser annealing, Residual Stress Thermomech. Infrared Imaging Hybrid Tech. Inverse Problems 8 (2014) 309–315. [CrossRef] [Google Scholar]
  23. Z. Han, H. Luo, Y. Zhang, J. Cao, Effects of micro-structure on fatigue crack propagation and acoustic emission behaviors in a micro-alloyed steel, Mater. Sci. Eng. A 559 (2013) 534–542. [CrossRef] [Google Scholar]
  24. C. Barile, C. Casavola, G. Pappalettera, C. Pappalettere, Hybrid thermography and acoustic emission testing of fatigue crack propagation in aluminum samples, Fract. Fatigue Failure Damage Evol. 5 (2015) 247–252. [Google Scholar]
  25. P. Mazal, F. Vlasic, V. Koula, Use of acoustic emission method for identification of fatigue micro-cracks creation, Procedia Eng. 133 (2015) 379–388. [Google Scholar]
  26. A.N. Smirnov, Generation of acoustic oscillations in chemical reactions and physicochemical processes, Russ. Chem. J. 45 (2001) 29–33. [Google Scholar]
  27. S.N. Zadumkin, Kh.B. Khokonov, H.B. Chakarov, Acoustic effect of crystallization and melting of the substance, JETP 68 (1975) 1315–1320. [Google Scholar]
  28. M. Łazarska, T.Z. Wozniak, Z. Ranachowski, A. Trafarski, G. Domek, Analysis of acoustic emission signals at austempering of steels using neural networks, Met. Mater. Int. 23 (2017) 426–433. [CrossRef] [Google Scholar]
  29. A. Mostavi, N. Kamali, N. Tehrani, S.W. Chi, D. Ozevin, J.E. Indacochea, Wavelet based harmonics decomposition of ultrasonic signal in assessment of plastic strain in aluminum, Measurement 106 (2017) 66–78. [CrossRef] [Google Scholar]
  30. H.N.G. Wadley, C.B. Scruby, J.H. Speake, Acoustic emission for physical examination of metals, Met. Rev. 25 (1980) 41–64. [CrossRef] [Google Scholar]
  31. A.B. Markov, A.V. Mikov, G.E. Ozur, A.G. Padej, Installation of RITM-SP for the formation of surface alloys, Instrum. Exp. Tech. 6 (2011) 122–126. [Google Scholar]
  32. M.H. Ras, P.C. Pistorius, Possible mechanisms for the improvement by vanadium of the pitting corrosion resistance of 18% chromium ferritic stainless steel, Corros. Sci. 44 (2002) 2479–2490. [Google Scholar]
  33. R. Merello, F.J. Botana, J. Botella, M.V. Matres, M. Marcos, Influence of chemical composition on the pitting corrosion resistance of non-standard low-Ni high-Mn-N duplex stainless steels, Corros. Sci. 4 (2003) 909–921. [Google Scholar]
  34. S.N. Grigoriev, A.S. Metel, S.V. Fedorov, Modification of the structure and properties of high-speed steel by combined vacuum-plasma treatment, Metal Sci. Heat Treat. 54 (2012) 8–12. [Google Scholar]
  35. A. Metel, S. Grigoriev, Yu. Melnik, Cutting tools nitriding in plasma produced by a fast neutral molecule, Jpn. J. Appl. Phys. 50 (2011) 08JG04. [Google Scholar]
  36. A.N. Ivanov, E.I. Fomicheva, E.V. Shelekhov, Application of a sliding beam for the study of surface layers on a general-purpose X-ray diffractometer, Plant Lab. 12 (1980) 41–47. [Google Scholar]
  37. N.A. Kochinev, F.S. Sabirov F.S., M.P. Kozochkin, The certificate of state registration of computer programs No. 2009613214 (RU), 2009. [Google Scholar]
  38. M.P. Kozochkin, N.A. Kochinev, F.S. Sabirov, Diagnostics and monitoring of complex production processes using measurement of vibration-acoustic signals, Meas. Tech. 49 (2006) 672–678. [CrossRef] [Google Scholar]
  39. M.P. Kozochkin, A.N. Porvatov, Effect of adhesion bonds in friction contact on vibroacoustic signal and auto-oscillations, J. Friction Wear 35 (2014) 389–395. [Google Scholar]
  40. A.B. Markov, L.L. Meisner, E.V. Yakovlev, Crater formation on the surface of stainless steel and titanium nickelide irradiated with low-energy electron beam: morphology and topography, proceedings of higher educational institutions, Physics 58 (2015) 173–177. [Google Scholar]
  41. A.I. Kirdyashkin, R.M. Gabbassov, Yu.M. Maksimova, V.G. Salamatova, Acoustic emission during self-propagating high-temperature synthesis, Combust. Explos. Shock Waves 49 (2013) 676–681. [Google Scholar]
  42. S.I. Kudryashov, K. Lyon, S.D. Allen, Parametric generation of multimegahertz acoustic oscillations in laser-generated multibubble system in bulk water, Appl. Phys. Lett 88 (2006) 214105. [Google Scholar]
  43. L.L. Meisner, A.I. Lotkov, M.G. Ostapenko, E. Yu. Gudimova, X-ray diffraction study of residual elastic stress and microstructure of near-surface layers in nickel–titanium alloy irradiated with low-energy high-current electron beams, Appl. Surf. Sci. 280 (2013) 398–404. [Google Scholar]
  44. M.P. Kashchenko, Wave model of martensite growth during γ–α transformation in iron-based alloys, Scientific center "Regular and chaotic dynamics", Izhevsk Institute of computer research, Moscow-Izhevsk, 2010. [Google Scholar]
  45. M.P. Kashchenko, A.G. Semenovih, V.G. Chashchina, Cryston model of α strain-induced martensite, J. Phys. 112 (2003) 147–150. [Google Scholar]
  46. M. Shaira, N. Godin, P. Guy, L. Vanel, J. Courbon, Evaluation of the strain-induced martensitic transformation by acoustic emission monitoring in 304 L austenitic stainless steel: identification of the AE signature of the martensitic transformation and power-law statistics, Mater. Sci. Eng. A 492 (2008) 392–399. [CrossRef] [Google Scholar]
  47. R. Khamedi, A Fallahi, H. Zoghi, The influence of morphology and volume fraction of martensite on AE signals during tensile loading of dual-phase steels, Int. J. Recent Trends Eng. 1 (2009) 30–34. [Google Scholar]
  48. E.H. Ahmad, T. Manzoor, M.M.A. Ziai, N. Hussain, Effect of martensite morphology on tensile deformation of dual-phase steel, J. Mater. Eng. Perform. 21 (2011) 1–6. [Google Scholar]
  49. H. Ohtsuka, K. Takashima, G.B. Olson, Nonthermoelastic and thermoelastic martensitic transformation behavior characterized by acoustic emission in an Fe–Pt alloy, DOI: 10.1557/PROC-459-407 [Google Scholar]
  50. L. Morsdorf, O. Jeannin, D. Barbier, M. Mitsuhara, D. Raabe, C.C. Tasan, Multiple mechanisms of lath martensite plasticity, Acta Mater. 121 (2016) 202–214. [Google Scholar]
  51. T. Barszcz, Decomposition of vibration signals into deterministic and nondeterministic components and its capabilities of fault detection and identification, Int. J. Appl. Math. Comput. Sci. 19 (2009) 327–335. [CrossRef] [Google Scholar]
  52. J. Duan, Y. Huang, R. Zhang, L. Wan, H. Li, J. Liu, Status and development of surface alloying by electron beam, Proceedings of the International Conference on Materials, Environmental and Biological Engineering (MEBE 2015) Guilin, China, 2015, pp. 646–649. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.