Issue
Mechanics & Industry
Volume 19, Number 7, 2018
STANKIN: High-efficiency machining of innovative materials
Article Number 703
Number of page(s) 9
DOI https://doi.org/10.1051/meca/2019009
Published online 08 April 2019
  1. V.Y. Fominskii, S.N. Grigoriev, R.I. Romanov, V.N. Nevolin, Effect of the pulsed laser deposition conditions on the tribological properties of thin-film nanostructured coatings based on molybdenum diselenide and carbon, Tech. Phys. 57 (2012) 516–523 [CrossRef] [Google Scholar]
  2. A. Metel, S. Grigoriev, Yu. Melnik, Cutting tools nitriding in plasma produced by a fast neutral molecule, Jpn. J. Appl. Phys. 50 (2011) 08JG04 [Google Scholar]
  3. O.V. Sobol, A.A. Andreev, S.N. Grigoriev, M.A. Volosova, V.F. Gorban, Vacuum-arc multilayer nanostructured TiN/Ti coatings: structure, stress state, properties, Metal Sci. Heat Treat. 7 (2011) 28–33 [Google Scholar]
  4. A.S. Vereschaka, A.A. Vereschaka, D.V. Sladkov, A.Y. Aksenenko, N.N. Sitnikov, Development and research of nanostructured multilayer composite coatings for tungsten-free carbides with the extended area of technological applications, Int. J. Adv. Manuf. Technol. 1 (2016) 9 [Google Scholar]
  5. V.P. Tabakov, A.S. Vereschaka, Development of technological means for formation of multilayer composite coatings, providing increased wear resistance of carbide tools, for different machining conditions, Key Eng. Mater. 581 (2014) 55–61 [CrossRef] [Google Scholar]
  6. S. Fedorov, M.H. Swe, Wear of carbide inserts with complex surface treatment when milling nickel alloy, Mech. Ind. 18 (2017) 710 [Google Scholar]
  7. S.V. Fedorov, S.V. Aleshin, M.H. Swe, Comprehensive surface treatment of high speed steel tool, Mech. Ind. 18 (2017) 711 [Google Scholar]
  8. C.J.C. Rodrigues, Mesogeometry of the cutting age, in: Cutting age preparation of precision cutting tools by applying micro-abrasive jet machining and brushing, Kassel University Press GmbH, Kassel, Germany [Google Scholar]
  9. F. Boud, L.F. Loo, P.K. Kinnell, The impact of plain waterjet machining on the surface integrity of aluminium 7475, Proc. CIRP 13 (2014) 382–386 [CrossRef] [Google Scholar]
  10. S.V. Fedorov, D. Weiss, M.H. Swe, Water-jet treatment as a way to prepare the surfaces of the solid alloy before applying the wear-resistant coating, Vestnik MGTU STANKIN 4 (2017) 48–51 [Google Scholar]
  11. K.D. Bouzakis, G. Skordaris, N. Michailidis, A. Asimakopoulos, G. Erkens, Effect on PVD-coated cemented carbide inserts cutting performance if microblasting, Surf. Coat. Technol. 200 (2005) 12–132 [Google Scholar]
  12. F.L. Chen, E. Siores, K. Patel, A.W. Momber, Minimising particle contamination at abrasive waterjet machined surfaces by a nozzle oscillation technique, Int. J. Mach. Tools Manuf. 42 (2002) 1385–1390 [CrossRef] [Google Scholar]
  13. S.B. Abusuilik, Pre-, intermediate, and post-treatment of hard coatings to improve their performance for forming and cutting tools, Surf. Coat. Technol. 284 (2015) 384–395 [CrossRef] [Google Scholar]
  14. A.S. Metel, S.N. Grigoriev, Yu.A. Melnik, V.V. Prudnikov, Glow discharge with electrostatic confinement of electrons in a chamber bombarded by fast electrons, Plasma Phys. Rep. 37 (2011) 628–637 [Google Scholar]
  15. S.N. Grigoriev, A.S. Metel, S.V. Fedorov, Modification of the structure and properties of high-speed steel by combined vacuum-plasma treatment, Metal Sci. Heat Treat. 54 (2012) 8–12 [Google Scholar]
  16. S.N. Grigoriev, Yu.A. Melnik, A.S. Metel, Broad fast neutral molecule beam sources for industrial-scale beam-assisted deposition, Surf. Coat. Technol. 156 (2002) 44–49 [Google Scholar]
  17. S.N. Grigoriev, Yu.A. Melnik, A.S. Metel, V.V. Panin, V.V. Prudnikov, A Compact vapor source of conductive target material sputtered by 3 keV ions at 0.05 Pa pressure, Instrum. Exp. Tech. 52 (2009) 731–737 [Google Scholar]
  18. S.V. Fedorov, S.N. Grigoriev, Tool surface microalloying by self-extending high-temperature synthesis, Mater. Sci. Forum 834 (2015) 21–28 [CrossRef] [Google Scholar]
  19. S.V. Fedorov, G.V. Oganyan, Special features of electron-beam alloying of replaceable polyhedral hard-alloy plates under a complex surface treatment, Metal Sci. Heat Treat. 9 (2016) 620–624 [CrossRef] [Google Scholar]
  20. J.M. Arryo, A.E. Diniz, M.S. Fernandes de Lima , Wear performance of laser precoating treated cemented carbide milling tools, Wear 268 (2010) 1329–1336 [CrossRef] [Google Scholar]
  21. B. Denkena, A. Kroedel, T. Grove, Influence of pulsed laser ablation on the surface integrity of PCBN cutting tool materials, Int. J. Adv. Manuf. Technol. 10 (2018) 1–12 [Google Scholar]
  22. M.A. Volosova, S.N. Grigoriev, E.A. Ostrikov, Use of laser ablation for the formation of discontinuous (discrete) wear-resistant coatings formed on hard carbide cutting tool by electron beam alloying and vacuum arc deposition, Mech. Ind. 17 (2016) 720 [CrossRef] [EDP Sciences] [Google Scholar]
  23. R. Voss, M. Henerichs, G. Capricano, F. Kuster, K. Wegener, Post-coating treatment of cutting edge for drilling carbon fibre reinforced plastics, Proc. CIRP 46 (2016) 161–164 [CrossRef] [Google Scholar]
  24. S. Maegawa, S. Hayakawa, F. Itoigawa, T. Nakamura, Development of the novel tool for cutting of carbon-fibre-reinforced plastics (positive use of abrasive wear at tool edge for the reduction in cutting force), Mech. Eng. J. 2 (2015) 6 [CrossRef] [Google Scholar]
  25. S. Marimuthu, A.M. Kamara, D. Whitehead, P. Matvienga, L. Li, Laser removal of TiN coatings from WC micro-tools and in-process monitoring, Optics Laser Technol. 42 (2010) 1233–1239 [CrossRef] [Google Scholar]
  26. P. Mativenga, M. Rajemi, S. Marimutu, Establishing a basis for sustainable re-use of cutting tools through laser decoating, J. Mach. Eng. 10 (2010) 36–47 [Google Scholar]
  27. S.V. Fedorov, A.V. Kabanov, E.A. Ostrikov, Technology of laser removal wear-resistant coatings from the surface of cutting tools made of hard alloys, Harden. Technol. Coat. 12 (2012) 40–43 [Google Scholar]
  28. E. Uhlmann, S. Richarz, V. Mihotovic, Substrate pre-treatment of cemented carbide using abrasive flow machining and laser beam ablation, Prod. Eng. 3 (2009) 81–86 [CrossRef] [Google Scholar]
  29. B. Breidenstein, B. Denkena, K. Gey, Residual stress development in laser machined PVD-coated carbide cutting tools, Mater. Sci. Forum 9 (2013) 768–769 [Google Scholar]
  30. L. Tiejun, L. Qihong, D. Jingxing, W. Yunrong, Z. Jun, L. Jingru, Z. Zhiming, S. Fanghong, Improved adhesion of diamond coating on cobalt-cemented tungsten carbide hard metal by using pulsed-UV-laser substrate surface pretreatment, Appl. Surf. Sci. 1–4 (2002) 102–119 [CrossRef] [Google Scholar]
  31. E. Cappelli, S. Orlando, F. Pinzari, A. Napoli, S. Kaciulis, WC-Co cutting tool surface modifications induced by pulsed laser treatment, Appl. Surf. Sci. 1–4 (1999) 376–382 [CrossRef] [Google Scholar]
  32. A. Miotello, R. Kelly, Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature, Appl. Phys. Mater. Sci. Process. 69 (1999) 67–73 [CrossRef] [Google Scholar]
  33. N.M. Bulgakova, A.V. Bulgakov, Pulsed laser ablation of solids: the transition from normal vaporization to phase explosion, Appl. Phys. Mater. Sci. Process. 73 (2001) 199–208 [Google Scholar]
  34. B. Denkena, B. Breidenstein, Residual stress distribution in PVD-coated carbide cutting tools: the origin of cohesive damage, Tribol. Ind. 3 (2012) 158–165 [Google Scholar]
  35. G.B.J. Cadot, D.A. Axinte, J. Billingham, Continuous trench, pulsed laser ablation for micro-machining applications, Int. J. Mach. Tools Manuf. 107 (2016) 8–20 [CrossRef] [Google Scholar]
  36. S. Long, D. Chantzis, A comparison of the DPSS UV laser ablation characteristic of 1024 and H10F WC, Opt. Laser Technol. 92 (2017) 101–108 [CrossRef] [Google Scholar]
  37. A.A. Vereschaka, S.N. Grigoriev, Study of cracking mechanisms in multi-layered composite nano-structured coatings, Wear 378–379 (2017) 43–57 [Google Scholar]
  38. A. Nazarov, V. Vivier, D. Thierry, F. Vucko, B. Tribollet, Effect of mechanical stress on the properties of steel surfaces: scanning Kelvin probe and local electrochemical impedance study, J. Electrochem. Soc. 164 (2017) 66–74 [CrossRef] [Google Scholar]
  39. S. Qi, Z. Liu, Y. Hua, J. Zhao, W. Ly, A.U.H. Mohsan, Effects of cutting edge microgeometry on residual stress in orthogonal cutting of Inconel 718 by FEM, Materials 11 (2018) 1015 [CrossRef] [Google Scholar]
  40. I.A. Choudhury, N.L. See, M. Zukhairi, Machining with chamfered tools, J. Mater. Process. Technol. 170 (2005) 115–120 [CrossRef] [Google Scholar]
  41. N. Fang, Q. Wu, The effects of chamfered and honed tool edge geometry in machining of three aluminium alloys, Int. J. Mach. Tools Manuf. 45 (2005) 1178–1187 [CrossRef] [Google Scholar]
  42. B. Denkena, M. Reichstein, J. Brodehl, L.G. Lde, Surface preparation, coating and wear performance of geometrically defined cutting edges, in: 8th CIRP International Workshop on Modeling of Machining Operations, May 10–11, 2005 [Google Scholar]
  43. B. Denkena, J. Koehler, M. Rehe, Influence of the honed cutting edge on tool wear and surface integrity in slot milling of 42CrNo4 steel, Procedia CIRP 1 (2012) 190–195 [CrossRef] [Google Scholar]
  44. T. Zhao, J.M. Zhou, V. Bushlya, J.E. Stähl, Effect of cutting edge radius on surface roughness and tool wear in hard turning of AISI 52100 steel, Int. J. Adv. Manuf. Technol. 91 (2017) 3611–3618 [CrossRef] [Google Scholar]
  45. A.S. Vaykhinde, U.B. Bhor, V.V. Sachhe, S.P. Valte, S.B. Deokar, Review of effect of tool nose radius on cutting force and surface roughness, Int. Res. J. Eng. Technol. 4 (2017) 699–703 [Google Scholar]
  46. M. Shatla, C. Kerk, T. Altan, Process modelling in machining. Part II: validation and applications of the determined flow stress data, Int. J. Mach. Tools Manuf. 41 (2001) 1659–1680 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.