Mechanics & Industry
Volume 19, Number 7, 2018
STANKIN: High-efficiency machining of innovative materials
Article Number 705
Number of page(s) 11
Published online 24 May 2019
  1. W. Shi, X. Gao, Q. Zhang, et al., Numerical investigations on effect of wear-ring clearance on performance of a submersible well pump, Adv. Mech. Eng. 9 (2017) 1687814017704155 [Google Scholar]
  2. K.V. Litvinenko, S.E. Zdolnik, V.G. Mikhailov, Modeling of the process of deterioration of ESP characteristics under conditions of intensive erosive wear, Oil Ind. 12 (2014) 132–135 [Google Scholar]
  3. H.M. Zhang, L.X. Zhang, Numerical studies of abrasion wear on the guide vanes in a submersible axial flow pump, Adv. Eng. Res. 20 (2015) 106–108 [Google Scholar]
  4. A. Ori, L. Ceschini, C. Martini, et al., Materials and surface modification technologies for variable displacement oleodynamic vane pumps: evaluation of the tribological behaviour?, metallurgia italiana 10 (2009) 19–38 [Google Scholar]
  5. M. Daqiqshirazi, R. Torabi, A. Riasi, et al., The effect of wear ring clearance on flow field in the impeller sidewall gap and efficiency of a low specific speed centrifugal pump, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 232 (2018) 3062–3073 [CrossRef] [Google Scholar]
  6. V.N. Ivanovsky, A.V. Degovtsov, A.A. Sabirov, S.V. Krivenkov, Influence on the operating time of electric drive centrifugal pump units of pump supply and rotation speed during operation of wells complicated by removal of mechanical impurities, Neftegaz Territory 9 (2017) 58–64 [Google Scholar]
  7. Z. Lu, C. Wang, N. Qiu, et al., Experimental study on the unsteady performance of the multistage centrifugal pump, J. Braz. Soc. Mech. Sci. 40 (2018) UNSP 264 [CrossRef] [Google Scholar]
  8. T. Schaefer, M. Neumann, A. Bieberle, et al., Experimental investigations on a common centrifugal pump operating under gas entrainment conditions, Nucl. Eng. Des. 316 (2017) 1–8 [CrossRef] [Google Scholar]
  9. A. Akkurt, Comparison of roller burnishing method with other hole surface finishing processes applied on AISI 304 austenitic stainless steel, J. Mater. Eng. Perform. 20 (2011) 960–968 [Google Scholar]
  10. V. Ostrovsky, M. Perelman, S. Peshcherenko, Mechanism of hydro-abrasive wear of oil pumps' stages, Drilling Oil 10 (2012) 32–34 [Google Scholar]
  11. V. Yu. Fominski, S.N. Grigoriev, A.G. Gnedovets, et al., Pulsed laser deposition of composite Mo-Se-Ni-C coatings using standard and shadow mask configuration, Surf. Coat. Technol. 206 (2012) 5046–5054 [Google Scholar]
  12. S.N. Grigoriev, A.S. Metel, M.A. Volosova, Yu.A. Melnik, Deposition of wear-resistant coatings using a combined source of metal atoms and fast gas molecules, Mech. Ind. 16 (2015) 705 [CrossRef] [Google Scholar]
  13. A.M. Abrao, B. Denkena, B. Breidenstein, et al., Surface and subsurface alterations induced by deep rolling of hardened AISI 1060 steel, Prod. Eng. Res. Dev. 8 (2014) 551–558 [CrossRef] [Google Scholar]
  14. S.C. Chaudhari, C.O. Yadav, A.B. Damor, A comparative study of mix flow pump impeller CFD analysis and experimental data of submersible pump, Int. J. Res. Eng. Technol. 1 (2013) 57–64 [Google Scholar]
  15. M.M. Stebulyanin, A.A. Gurkina, A.A. Shein, N.Y. Cherkasova, Measuring adhesive bond strength and microhardness of multilayer composite wear-resistant coating, Mech. Ind. 17 (2016) 712 [CrossRef] [EDP Sciences] [Google Scholar]
  16. M.M. Akhmedpashaev, M.U. Akhmedpashaev, Zh.B. Begov, Life of submersible-pump components, Russ. Eng. Res. 38 (2018) 752–754 [CrossRef] [Google Scholar]
  17. Q. Wei, X. Sun, Performance influence in submersible pump with different diffuser inlet widths, Adv. Mech. Eng. 9 (2017) 1687814016683354 [Google Scholar]
  18. A.S. Metel, S.N. Grigoriev, Yu.A. Melnik, V.V. Prudnikov, Glow discharge with electrostatic confinement of electrons in a chamber bombarded by fast electrons, Plasma Phys. Rep. 37 (2011) 628–637 [Google Scholar]
  19. S.N. Grigoriev, A.S. Metel, M.A. Volosova, Yu.A. Melnik, Surface hardening by means of plasma immersion ion implantation and nitriding in glow discharge with electrostatic confinement of electrons, Mech. Ind. 16 (2015) 711 [CrossRef] [EDP Sciences] [Google Scholar]
  20. M.A. Volosova, S.N. Grigoriev, E.A. Ostrikov, Use of laser ablation for formation of discontinuous (discrete) wear-resistant coatings formed on solid carbide cutting tool by electron beam alloying and vacuum-arc deposition, Mech. Ind. 17 (2016) 720 [CrossRef] [EDP Sciences] [Google Scholar]
  21. S.N. Grigoriev, A.S. Metel, S.V. Fedorov, Modification of the structure and properties of high-speed steel by combined vacuum-plasma treatment, Met. Sci. Heat Treat. 54 (2012) 8–12 [CrossRef] [Google Scholar]
  22. A. Metel, M. Volosova, S. Grigoriev, Yu. Melnik, Products pre-treatment and beam-assisted deposition of magnetron sputtered coatings using a closed cylindrical grid inside a planetary rotation system, Surf. Coat. Technol. 325 (2017) 327–332 [Google Scholar]
  23. O.V. Sobol', A.A. Andreev, S.N. Grigoriev, M.A. Volosova, V.F. Gorban', Vacuum-arc multilayer nanostructured TiN/Ti coatings: structure, stress state, properties, Met. Sci. Heat Treat. 54 (2012) 28–33 [CrossRef] [Google Scholar]
  24. M. Sahin, C. Misirli, D. Özkan, Characteristic properties of AlTiN and TiN coated HSS materials, Ind. Lubr. Tribol. 67 (2015) 172–180 [CrossRef] [Google Scholar]
  25. J.K. Katiyar, A. Kumar, B. Pandey, Synthesis of iron-copper alloy using electrical discharge machining, Mater. Manuf. Process. 33 (2018) 1531–1538 [CrossRef] [Google Scholar]
  26. P. Chakraborty, S.B. Biner, Crystal plasticity modeling of irradiation effects on flow stress in pure-iron and iron-copper alloys, Mech. Mater. 101 (2016) 71–80 [Google Scholar]
  27. V.N. Antsiferov, A.I. Rabinovich, O.M. Perelman, et al., Method of manufacturing sintered articles, Russian Federation Patent No. 2037382, 19.06.1995 [Google Scholar]
  28. X.L. Yuan, Y.W. Sun, L.S. Gao, et al., Effect of roller burnishing process parameters on the surface roughness and microhardness for TA2 alloy, Int. J. Adv. Manuf. Technol. 85 (2017) 1373–1383 [Google Scholar]
  29. M. Okada, Y. Miyagoshi, M. Otsu, Roller burnishing method with active rotation tool − better surface finish than conventional roller burnishing, Key Eng. Mater. 749 (2017) 9–14 [Google Scholar]
  30. J.J. Kauzlarich, J.A. Williams, Archard wear and component geometry, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 215 (2001) 387–403 [CrossRef] [Google Scholar]
  31. R.G. Solanki, K.A. Patel, R.B. Dhruv, Parametric optimization of roller burnishing process for surface roughness, J. Mech. Civil Eng. 13 (2016) 21–26 [Google Scholar]
  32. E. Yu. Kropotkina, V.K. Flegentov, Hardening of powder alloy components by rolling, Russ. Eng. Res. 35 (2015) 822–823 [CrossRef] [Google Scholar]
  33. S. Kikuchi, Y. Nakamura, K. Nambu, et al., Formation of the hydroxyapatite layer on Ti-6Al-4V ELI alloy by fine particle peening, Int. J. Autom. Technol. 11 (2017) 915–924 [CrossRef] [Google Scholar]
  34. M. Okada, H. Kozuka, H. Tachiya, et al., Burnishing process using spherical 5-dof hybrid-type parallel mechanism with force control, Int. J. Autom. Technol. 8 (2014) 243–252 [CrossRef] [Google Scholar]
  35. M. Okada, S. Suenobu, K. Watanabe, et al., Development and burnishing characteristics of roller burnishing method with rolling and sliding effects, Mechatronics 29 (2015) 110–118 [CrossRef] [Google Scholar]
  36. G.D. Revankar, R. Shetty, S.S. Rao, et al., Wear resistance enhancement of titanium alloy (Ti-6A1-4V) by ball burnishing process, J. Mater. Res. Technol. 6 (2017) 13–32 [CrossRef] [Google Scholar]
  37. M. Kowalik, T. Mazur, T. Trzepiecinski, Assessment of the depth of the deformed layer in the roller burnishing process, Strength Mater. 50 (2018) 493–503 [CrossRef] [Google Scholar]
  38. M.R. Stalin John, N. Banerjee, K. Shrivastava, et al., Optimization of roller burnishing process on EN-9 grade alloy steel using response surface methodology, J. Braz. Soc. Mech. Sci. 39 (2017) 3089–3101 [CrossRef] [Google Scholar]
  39. Y. Yanagisawa, Y. Kishi, K. Sasaki, Analysis of residual stresses during heat treatment of large forged shafts considering transformation plasticity and creep deformation, Strength Mater. 49 (2017) 239–249 [CrossRef] [Google Scholar]
  40. B. Zabkar, J. Kopae, An investigation into roller burnishing, J. Prod. Eng. 16 (2013) 45–48 [Google Scholar]
  41. P. Zhang, J. Lindemann, W.J. Ding, et al., Effect of roller burnishing on fatigue properties of the hot-rolled Mg-12Gd-3Y magnesium alloy, Mater. Chem. Phys. 124 (2010) 835–840 [Google Scholar]
  42. H. Amdouni, H. Bouzaiene, A. Montagne, et al., Modeling and optimization of a ball-burnished aluminum alloy flat surface with a crossed strategy based on response surface methodology, Int. J. Adv. Manuf. Technol. 88 (2017) 801–814 [Google Scholar]
  43. H.-S. Park, T.-T. Nguyen, X.-P. Dang, Multi-objective optimization of turning process of hardened material for energy efficiency, Int. J. Precis. Eng. Manuf. 12 (2016) 1623–1631 [CrossRef] [Google Scholar]
  44. X. Yuan, Y. Sun, C. Li, et al., Experimental investigation into the effect of low plasticity burnishing parameters on the surface integrity of TA2, Int. J. Adv. Manuf. Technol. 88 (2017) 1089–1099 [Google Scholar]
  45. R. Aviles, J. Albizuri, A. Rodriguez, et al., Influence of low-plasticity ball burnishing on the high-cycle fatigue strength of medium carbon AISI 1045 steel, Int. J. Fatigue 55 (2013) 230–244 [Google Scholar]
  46. L. Hiegemann, C. Weddeling, A.E. Tekkaya, Analytical contact pressure model for predicting roughness of ball burnished surfaces, J. Mater. Process. Technol. 232 (2016) 63–77 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.