Open Access
Issue
Mechanics & Industry
Volume 20, Number 1, 2019
Article Number 110
Number of page(s) 16
DOI https://doi.org/10.1051/meca/2018040
Published online 04 April 2019
  1. T.E. Carl, An experimental investigation of a cylindrical journal bearing under constant and sinusoidal loading, Proc. Inst. Mech. Eng. 178 (1963) 100–119. doi: 10.1243/PIME [Google Scholar]
  2. E.W. Hemingway, The measurement of film thickness in thrust bearings and the deflected shape of “parallel” surface thrust pads, Proc. Inst. Mech. Eng. 180 (1965) 1025–1034 [CrossRef] [Google Scholar]
  3. S. Kawabata, S. Iwanami, T. Hotta, F. Itoigawa, T. Nakamura, Hydrodynamic lubrication effects of multiple circular bump pattern for a thrust sliding bearing of a scroll compressor, Tribology 7 (2012) 13–23. doi: 10.2474/trol.7.13 [Google Scholar]
  4. A. Bennett, C. Ettles, A self-acting parallel surface thrust bearing, Proc. Inst. Mech. Eng. 182 (1967) 139–146 [Google Scholar]
  5. C.L. Robinson, A. Cameron, Studies in hydrodynamic thrust bearings. II. Comparison of calculated and measured performance of tilting pads by means of interferometry, Philos. Trans. R. Soc. Lond. A 278 (1975) 367–384. doi: 10.1098/rsta.1948.0007 [CrossRef] [Google Scholar]
  6. A. Cameron, C.L. Robinson, Studies in hydrodynamic thrust bearings. I. Theory considering thermal and elastic destortions, Philos. Trans. R. Soc. Lond. A 278 (1975) 351–366. doi: 10.1098/rsta.1948.0007 [CrossRef] [Google Scholar]
  7. C.M. Ettles, Size effects in tilting pad thrust bearings, Wear 59 (1980) 231–245 [CrossRef] [Google Scholar]
  8. A. Cameron, The Viscosity Wedge, ASLE Trans. 1 (1958) 248–253. doi: 10.1080/05698195808972337 [CrossRef] [Google Scholar]
  9. J. Lundberg, Influence of surface roughness on normal-sliding lubrication, Tribol. Int. 28 (1995) 317–322. doi: 10.1016/0301-679X(94)00003-9 [CrossRef] [Google Scholar]
  10. V. Bakolas, Analysis of rough line contacts operating under mixed elastohydrodynamic lubrication conditions, Lubr. Sci. 16 (2004) 153–168. doi: 10.1002/ls.3010160206 [CrossRef] [Google Scholar]
  11. S.T. Tzeng, E. Sabiel, Surface roughness effect on slider lubrication, ASLE Trans. 10 (1967) 334–348 [CrossRef] [Google Scholar]
  12. H. Christensen, Stochastic models for hydrodynamic lubrication of rough surfaces, Proc. Inst. Mech. Eng. 184 (1970) 1013–1026 [CrossRef] [Google Scholar]
  13. H. Christensen, K. Tonder, The hydrodynamic lubrication of rough bearing surfaces of finite width, J. Tribol. 93 (1971) 324–329 [Google Scholar]
  14. K. Tonder, H. Christensen, The hydrodynamic lubrication of rough journal bearings, J. Tribol. 95 (1973) 166–172 [Google Scholar]
  15. L.S.H. Chow, H.S. Cheng, Influence of Surface Roughness and Waviness on Film Thickness and Pressure Distribution in Elastohydrodynamic Contacts, NASA Contractor Report CR-2670 (1967) [Google Scholar]
  16. H.S. Cheng, L.S.H. Chow, The effect of surface roughness on the average film thickness between lubricated rollers, J. Tribol. 98 (1976) 117–124 [Google Scholar]
  17. N. Patir, H.S. Cheng, Average flow model for determining effects of 3-dimensional roughness on partial hydrodynamic lubrication, J. Lubr. Technol. 100 (1978) 12–17 [Google Scholar]
  18. N. Patir, H.S. Cheng, Application of average flow model to lubrication between rough sliding surfaces, J. Lubr. Technol. 101 (1979) 220–230 [Google Scholar]
  19. H.S. Cheng, N. Patir, Effect of surface roughness orientation on the central film thickness in EHD contacts, Proc. Soc. Photo-Opt. Instrum. Eng. (1979) 15–21 [Google Scholar]
  20. F. Guo, X. Jia, S. Suo, R.F. Salant, Y. Wang, A mixed lubrication model of a rotary lip seal using flow factors, Tribol. Int. 57 (2013) 195–201 [CrossRef] [Google Scholar]
  21. Q. Wen, Y. Liu, W. Huang, S. Suo, Y. Wang, The effect of surface roughness on thermal-elasto-hydrodynamic model of contact mechanical seals, Sci. China Phys. Mech. Astron. 56 (2013) 1920–1929 [CrossRef] [Google Scholar]
  22. X.Y. Zhao, Y. Liu, W.F. Huang, X.F. Liu, Y.M. Wang, Mechanism of second stage mechanical seal in hydrostatic seal system of nuclear coolant pumps, Tribology 4 (2014) 459–467 [Google Scholar]
  23. H. Khan, P. Sinha, Thermal elastohydrodynamic lubrication of line contact rough surfaces using flow factor method, Contemp. Eng. Sci. 3 (2010) 113–138 [Google Scholar]
  24. H. Khan, P. Sinha, Effect of shear flow factor on thermal elastohydrodynamic lubrication of infinite line contact rough surfaces, Proc. Natl. Acad. Sci. A 80 (2010) 327–346 [Google Scholar]
  25. H. Khan, Thermal elastohydrodynamic lubrication of infinite line contact rough surfaces considering pressure and shear flow factors, Int. J. Surf. Sci. Eng. 7 (2013) 217–249 [CrossRef] [Google Scholar]
  26. H. Khan, P. Sinha, Effect of inter-asperity cavitation on thermal elastohydrodynamic lubrication of infinite line contact rough surfaces, Int. J. Surf. Sci. Eng. 5 (2011) 2015–225 [CrossRef] [Google Scholar]
  27. M. Qui, B. Raeymaekers, The load-carrying capacity and friction coefficient of incompressible textured parallel slider bearings with surface roughness inside the textured features, Proc. Mech. Eng. J 229 (2015) 547–556 [Google Scholar]
  28. Y. Wang, Y. Liu, Z. Wang, Y. Wang, Surface roughness characteristics effects on fluid load capability of tilting pad thrust bearings with water lubrication, Friction 5 (2017) 392–401 [CrossRef] [Google Scholar]
  29. R.A. Burton, Effect of two-dimensional, sinusoidal roughness on the load support characteristics of a lubricant film, J. Basic Eng. D 85 (1963) 258–262 [CrossRef] [Google Scholar]
  30. M.G. Davies, The generation of pressure between rough, fluid lubricated, moving, deformable surfaces, Lubr. Eng. 19 (1963) 246. [Google Scholar]
  31. A. Felix Quinonenz, G.E. Morales-Espejel, Surface roughness effects in hydrodynamic bearings, Tribol. Int. 98 (2016) 212–219 [CrossRef] [Google Scholar]
  32. R. Kumar, Md. S. Azam, S.K. Ghosh, H. Khan, Effect of surface roughness and deformation on Rayleigh step bearing under thin film lubrication, Ind. Lubr. Tribol. 69 (2017) 1016–1032 [CrossRef] [Google Scholar]
  33. P.R. Goglia, T.F. Conry, C. Cusano, The effects of surface irregularities on the elastohydrodynamic lubrication of sliding line contacts. 1. Single irregularities, J. Tribol. 106 (1984) 104–112 [CrossRef] [Google Scholar]
  34. P.R. Goglia, T.F. Conry, C. Cusano, The effects of surface irregularities on the elastohydrodynamic lubrication of sliding line contacts. 2. Wavy surfaces, J. Tribol. 106 (1984) 113–119 [CrossRef] [Google Scholar]
  35. C.C. Kweh, H.P. Evans, R.W. Sindle, Micro-elastohydrodynamic lubrication of an elliptical contact with transverse and tree-dimensional sinusoidal roughness, J. Tribol. 111 (1989) 577–584 [CrossRef] [Google Scholar]
  36. H. Khan, P. Sinha, A. Saxena, A simple algorithm for thermo-elasto-hydrodynamic lubrication problems, Int. J. Res. Rev. Appl. Sci. 1 (2009) 265–279 [Google Scholar]
  37. D.S. Wang, J.F. Lin, Effect of surface roughness on elastohydrodynamic lubrication of line contacts, Tribol. Int. 24 (1991) 51–62 [CrossRef] [Google Scholar]
  38. H. Khan, A numerical study of thermo elastohydrodynamic lubrication of infinite line contact rough surfaces, PhD thesis, 2010 [Google Scholar]
  39. G. Higginson, D. Dowson, Elastohydrodynamic Lubrication, Pergamon Press, Oxford, 1977 [Google Scholar]
  40. C. Roelands, J. Vlugter, H. Watermann, The viscosity-temperature-pressure relationship of lubricating oils and its correlation with chemical constitution, ASME J. Basic Eng. 85 (1963) 601–610 [CrossRef] [Google Scholar]
  41. P. Huang, Numerical Calculation of Lubrication, 1st edn, John Wiley & Sons, Inc., Guangzhou, 2013, pp. 117–124 [Google Scholar]
  42. D. Zhu, On some aspects in numerical solution of thin-film and mixed EHL, J. Eng. Tribol. 221 (2007) 561–579. doi: 10.1243/13506501JET259 [Google Scholar]
  43. K. Yagi, J. Sugimura, Elastohydrodynamic simulation of Rayleigh step bearings in thin film hydrodynamic lubrication, Tribol. Int. 64 (2013) 214. doi: 10.1016/j.triboint.2013.04.005 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.