Free Access
Issue
Mechanics & Industry
Volume 20, Number 2, 2019
Article Number 206
Number of page(s) 9
DOI https://doi.org/10.1051/meca/2019023
Published online 24 May 2019
  1. W. Sun, X. Yue, Y. Wang, Exergy efficiency analysis of ORC (organic Rankine cycle) and ORC based combined cycles driven by low-temperature waste heat, Energy Convers. Manage. 135 (2017) 63–73 [CrossRef] [Google Scholar]
  2. B. Saleh, Energy and exergy analysis of an integrated organic Rankine cycle-vapor compression refrigeration system, Appl. Therm. Eng. 141 (2018) 697–710 [Google Scholar]
  3. C. Yue, F. You, Y. Huang, Thermal and economic analysis of an energy system of an ORC coupled with vehicle air conditioning, Int. J. Refrig. 64 (2016) 152–167 [Google Scholar]
  4. B. Saleh, Parametric and working fluid analysis of a combined organic Rankine-vapor compression refrigeration system activated by low-grade thermal energy, J. Adv. Res. 7 (2016) 651–660 [CrossRef] [PubMed] [Google Scholar]
  5. H. Chang, Z. Wan, Y. Zheng, X. Chen, S. Shu, Z. Tu, S.H. Chan, Energy analysis of a hybrid PEMFC-solar energy residential micro CCHP system combined with an organic Rankine cycle and vapor compression cycle, Energy Convers. Manage. 142 (2017) 374–384 [CrossRef] [Google Scholar]
  6. K. Braimakis, A. Thimo, S. Karellas, Technoeconomic analysis and comparison of a solar-based biomass ORC-VCC system and a PV heat pump for domestic trigeneration, J. Energy Eng. 143 (2017) 04016048 [CrossRef] [Google Scholar]
  7. D. Wu, L. Aye, T. Ngo, P. Mendis, Optimisation and financial analysis of an organic Rankine cycle cooling system driven by facade integrated solar collectors, Appl. Energy 185 (2017) 172–182 [Google Scholar]
  8. R. Lizarte, M.E. Palacios-Lorenzo, J.D. Marcos, Parametric study of a novel organic Rankine cycle combined with a cascade refrigeration cycle (ORC-CRS) using natural refrigerants, Appl. Therm. Eng. 127 (2017) 378–389 [Google Scholar]
  9. M. Asim, M.K.H. Leung, Z. Shan, Y. Li, D.Y.C. Leung, M. Ni, Thermodynamic and thermo-economic analysis of integrated organic Rankine cycle for waste heat recovery from vapor compression refrigeration cycle, Energy Procedia 143 (2017) 192–198 [Google Scholar]
  10. E. Cihan, Cooling performance investigation of a system with an organic Rankine cycle using waste heat sources, J. Therm. Sci. Technol. 34 (2014) 101–109 [Google Scholar]
  11. H. Li, X. Bu, L. Wang, Z. Long, Y. Lian, Hydrocarbon working fluids for a Rankine cycle powered vapor compression refrigeration system using low-grade thermal energy, Energy Build. 65 (2013) 167–172 [Google Scholar]
  12. S. Aphornratana, T. Sriveerakul, Analysis of a combined Rankine-vapour compression refrigeration cycle, Energy Convers. Manage. 51 (2010) 2557–2564 [CrossRef] [Google Scholar]
  13. X. Bu, L. Wang, H. Li, Performance analysis and working fluid selection for geothermal energy-powered organic Rankine-vapor compression air conditioning, Geothermal Energy 1–2 (2013) 1–14 [Google Scholar]
  14. X. Bu, L. Wang, H. Li, Working fluids selection for fishing boats waste heat powered organic Rankine-vapor compression ice maker, Heat Mass Transf. 50 (2014) 1479–1485 [Google Scholar]
  15. W. Han, Q. Chen, L. Sun, S. Mac, T. Zhao, D. Zheng, H. Jin, Experimental studies on a combined refrigeration/power generation system activated by low-grade heat, Energy 74 (2014) 59–66 [CrossRef] [Google Scholar]
  16. H. Wang, R. Peterson, K. Harada, E. Miller, R. Ingram-Goble, L. Fisher, Performance of a combined organic Rankine cycle and vapor compression cycle for heat activated cooling, Energy 36 (2011) 447–458 [CrossRef] [Google Scholar]
  17. F. Molés, J. Navarro-Esbrí, B. Peris, A. Mota-Babiloni, K. Kontomaris, Thermodynamic analysis of a combined organic Rankine cycle and vapor compression cycle system activated with low temperature heat sources using low GWP fluids, Appl. Therm. Eng. 87 (2015) 444–453 [Google Scholar]
  18. M.T. Nasir, K.C. Kim, Working fluids selection and parametric optimization of an organic Rankine cycle coupled vapor compression cycle (ORC-VCC) for air conditioning using low grade heat, Energy Build. 129 (2016) 378–395 [Google Scholar]
  19. Y.R. Li, X.Q. Wang, X.P. Li, J.N. Wang, Performance analysis of a novel power/refrigerating combined-system driven by the low-grade waste heat using different refrigerants, Energy 73 (2014) 543–553 [CrossRef] [Google Scholar]
  20. K.H. Kim, H. Perez-Blanco, Performance analysis of a combined organic Rankine cycle and vapor compression cycle for power and refrigeration cogeneration, Appl. Therm. Eng. 91 (2015) 964–974 [Google Scholar]
  21. B. Saleh, Performance analysis and working fluid selection for ejector refrigeration cycle, Appl. Therm. Eng. 107 (2016) 114–124 [Google Scholar]
  22. A.H. Antunes, E.P. Filho, Experimental investigation on the performance and global environmental impact of a refrigeration system retrofitted with alternative refrigerants, Int. J. Refrig. 70 (2016) 119–127 [Google Scholar]
  23. E.K. Goharshadi, F. Moosavi, Prediction of thermodynamic properties of some hydrofluoroether refrigerants using a new equation of state, Fluid Phase Equilib. 238 (2005) 112–119 [Google Scholar]
  24. J.M. Calm, G.C. Hourahan, Physical, safety, and environmental data summary for current and alternative refrigerants, in: Proceedings of the 23rd International Congress of Refrigeration, Prague, Czech Republic, ID: 915, 2011, pp. 1–22 [Google Scholar]
  25. J.M. Calm, ARTI Refrigerant Database: Data Summaries − Volume 1: Single-Compound Refrigerants, Air-Conditioning and Refrigeration Technology Institute, Arlington, VA, 1999 [Google Scholar]
  26. E.W. Lemmon, M.L. Huber, M.O. McLinden, Reference Fluid Thermodynamic and Transport Properties (REFPROP): Version 9.1, National Institute of Standards and Technology (NIST), Boulder, CO, 2013 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.