Free Access
Issue
Mechanics & Industry
Volume 20, Number 5, 2019
Article Number 503
Number of page(s) 11
DOI https://doi.org/10.1051/meca/2019024
Published online 15 July 2019
  1. G. Wang, G. Zhao, Y. Guan, Thermal response of an electric heating rapid cycle molding mold and its effect on surface appearance and tensile strength of the molded part, J. Appl. Polym. Sci. 128 (2013) 1339–1352 [Google Scholar]
  2. G. Wang, G. Zhao, X. Wang, Experimental research on the effects of cavity surface temperature on surface appearance properties of the molded part in rapid heat cycle molding process, Int. J. Adv. Manuf. Technol. 68 (2013) 1293–1310 [Google Scholar]
  3. G. Lucchetta, M. Fiorotto, P.F. Bariani, Influence of rapid mold temperature variation on surface topography replication and appearance of injection-molded parts, CIRP Ann. Manuf. Technol. 61 (2012) 539–542 [Google Scholar]
  4. G. Lucchetta, M. Fiorotto, Influence of rapid mould temperature variation on the appearance of injection moulded parts, J. Mech. Eng. 59 (2013) 683–688 [CrossRef] [Google Scholar]
  5. Cheng-Long Xiao, Han-Xiong Huang, Xing Yang, Development and application of rapid thermal cycling molding with electric heating for improving surface quality of microcellular injection molded parts, Appl. Therm. Eng. 100 (2016) 478–489 [Google Scholar]
  6. Lei Zhang, Guoqun Zhao, Guilong Wang, Guiwei Dong, Hao Wu, Investigation on bubble morphological evolution and plastic part surface quality of microcellular injection molding process based on a multiphase-solid coupled heat transfer model, Int. J. Heat Mass Transf. 104 (2017) 1246–1258 [Google Scholar]
  7. Lei Zhang, Guoqun Zhao, Guilong Wang, Formation mechanism of porous structure in plastic parts injected by microcellular injection molding technology with variable mold temperature, Appl. Therm. Eng. 114 (2017) 484–497 [Google Scholar]
  8. Felice De Santis, Roberto Pantani, Development of a rapid surface temperature variation system and application to micro-injection molding, J. Mater. Process. Technol. 237 (2016) 1–11 [CrossRef] [Google Scholar]
  9. G. Wang, G. Zhao, H. Li, Y. Guan, Multi-objective optimization design of the heating/cooling channels of the steam-heating rapid thermal response mold using particle swarm optimization, Int. J. Therm. Sci. 50 (2011) 790–802 [Google Scholar]
  10. G. Wang, G. Zhao, H. Li, Y. Guan, Research on optimization design of the heating/cooling channels for rapid heat cycle molding based on response surface methodology and constrained particle swarm optimization, Expert Syst. Appl. 38 (2011) 6705–6719 [Google Scholar]
  11. M.H. Wang, J.J. Dong, W.H. Wang, J. Zhou, Z. Dai, X.R. Zhuang, Optimal design of medium channels for water-assisted rapid thermal cycle mold using multiobjective evolutionary algorithm and multi-attribute decision-making method, Int. J. Adv. Manuf. Technol. 68 (2013) 9–12 [Google Scholar]
  12. Luca Crema, Marco Sorgato, Giovanni Lucchetta, Thermal optimization of deterministic porous mold inserts for rapid heat cycle molding, Int. J. Heat Mass Transf. 109 (2017) 462–469 [Google Scholar]
  13. G. Wang, G. Zhao, X. Wang, Heating/cooling channels design for an automotive interior part and its evaluation in rapid heat cycle molding, Mater. Des. 59 (2014) 310–322 [Google Scholar]
  14. Moez Hammami, Fatma Kria, Mounir Baccar, Numerical study of thermal control system for rapid heat cycle injection molding process, Proc. Inst. Mech. Eng., Part E: J. Process Mech. Eng. 229 (2015) 315–326 [CrossRef] [Google Scholar]
  15. Fatma Kria, Moez Hammami, Mounir Baccar, Conformal heating/cooling channels design in rapid heat cycle molding process, Mechanics and Industry 18 (2017) 109 [CrossRef] [Google Scholar]
  16. M'hamed Boutaous, Nadia Brahmia, Patrick Bourgin, Parametric study of the crystallization kinetics of a semi-crystalline polymer during cooling, Comptes rendus mecanique 338 (2010) 78–84 [CrossRef] [Google Scholar]
  17. D.H. Kim, M.H. Kang, Y.H. Chun, Development of a new injection molding technology: Momentary mold surface heating process, J. Inject. Molding Technol. 5 (2001) 229–232 [Google Scholar]
  18. K. Park, S.I. Lee, Localized mold heating with the aid of selective induction for injection molding of high aspect ratio micro-features, J. Micromech. Microeng. 20 (2010) 1–11 [Google Scholar]
  19. M.C. Yu, W.B. Young, P.M. Hsu, Micro-injection molding with the infrared assisted mold heating system, Mater. Sci. Eng.: A 460–461 (2007) 288–295 [Google Scholar]
  20. G. Wang, G. Zhao, H. Li, Y. Guan, Analysis of thermal cycling efficiency and optimal design of heating/cooling systems for rapid heat cycle injection molding process, Mater. Des. 31 (2010) 3426–3441 [Google Scholar]
  21. G. Wang, G. Zhao, H. Li, Y. Guan, Research of thermal response simulation and mold structure optimization for rapid heat cycle molding processes, respectively, with steam heating and electric heating, Mater. Des. 31 (2010) 382–395 [Google Scholar]
  22. M. Hammami, F. Kria, M. Baccar, Numerical study of the operating parameter effect on rapid heat cycle molding process, Proc. Inst. Mech. Eng., Part E: J. Process Mech. Eng. 231 (2017) 1075–1084 [CrossRef] [Google Scholar]
  23. Autodesk simulation Moldflow adviser, (2014) [Google Scholar]
  24. Moldflow plastic insight release, 5.0 (2002) [Google Scholar]
  25. M.W. Rohsenow, J.P. Hartnett, Handbook of heat transfer, McGraw-Hill, New York, 1973 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.