Free Access
Issue
Mechanics & Industry
Volume 20, Number 5, 2019
Article Number 502
Number of page(s) 9
DOI https://doi.org/10.1051/meca/2019022
Published online 15 July 2019
  1. B.C. Sakiadis, Boundary layer behavior on continuous solid surface: I. Boundary-layer equations for two-dimensional and axisymmetric flow, AIChE J. 7 (1961) 26–34 [Google Scholar]
  2. T.C. Chiam, Hydromagnetic flow over a surface stretching with a power-law velocity, Int. J. Eng. Sci. 33 (1995) 429–435 [Google Scholar]
  3. S. Liao, I. Pop, Explicit analytic solution for similarity boundary layer equations, Int. J. Heat Mass Transf. 47 (2004) 75–85 [Google Scholar]
  4. L.J. Grubka, K.M. Bobba, Heat transfer characteristics of a continuous stretching surface with variable temperature, J. Heat Transfer. 107 (1985) 248–250 [Google Scholar]
  5. B.K. Dutta, P. Roy, A.S. Gupta, Temperature field in flow over a stretching surface with uniform heat flux, Int. Commun. Heat Mass Transf. 12 (1985) 89–94 [CrossRef] [Google Scholar]
  6. C.H. Chen, Laminar mixed convection adjacent to vertical, continuously stretching sheets, Heat Mass Transf. 33 (1998) 471–698 [Google Scholar]
  7. S. Nadeem, R. Mehmood, N.S. Akbar, Non-orthogonal stagnation point flow of a nano non-Newtonian fluid towards a stretching surface with heat transfer. Int. J. Heat Mass Transf. 57 (2013) 679–689 [Google Scholar]
  8. A. Majeed, A. Zeeshan, R. Ellahi, Chemical reaction and heat transfer on boundary layer Maxwell Ferro-fluid flow under magnetic dipole with Soret and suction effects, Eng. Sci. Technol. Int. J. 20 (2017) 1122–1128 [CrossRef] [Google Scholar]
  9. T. Hayat, M. Qasim, Influence of thermal radiation and joule heating on MHD flow of a Maxwell fluid in the presence of thermophoresis, Int. J. Heat Mass Transf. 53 (2010) 4780–4788 [Google Scholar]
  10. V. Aliakbar, A.A. Pahlavan, K. Sadeghy, The influence of thermal radiation on MHD flow of Maxwellian fluids above stretching sheets, Commun. Nonlinear Sci. Numer. Simul. 14 (2009) 779–794 [Google Scholar]
  11. R.C. Bataller, Effects of heat source/sink, radiation and work done by deformation on flow and heat transfer of a viscoelastic fluid over a stretching sheet, Comput. Math. Appl. 53 (2007) 305–316 [Google Scholar]
  12. M.S. Abel, E. Sanjayanand, M.M. Nandeppanavar, Viscoelastic MHD flow and heat transfer over a stretching sheet with viscous and ohmic dissipations, Commun. Nonlinear Sci. Numer. Simul. 13 (2008) 1808–1821 [Google Scholar]
  13. M.M. Rashidi, E. Momoniat, B. Rostami, Analytic approximate solutions for MHD boundary-layer viscoelastic fluid flow over continuously moving stretching surface by Homotopy Analysis Method with two auxiliary parameters, J. Appl. Math. 2012 (2012) 19 [Google Scholar]
  14. A. Majeed, A. Zeeshan, H. Xu, M. Kashif, U. Masud, Heat transfer analysis of magneto-Eyring-Powell fluid over a non-linear stretching surface with multiple slip effects: Application of Roseland's heat flux, Can. J. Phys. (2019), doi: 10.1139/cjp-2018-0602 [Google Scholar]
  15. S.S. Papell, Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles, US-PATENT-APPL-SN-315096 [Google Scholar]
  16. R.E. Rosensweig, Ferrohydrodynamics, Dover Publications, Inc., New York, 1997 [Google Scholar]
  17. A. Jafari, T. Tynjala, S. Mousavi, P. Sarkomaa, Cfd simulation and evaluation of controllable parameters effect on thermomagnetic convection in ferrofluids using Taguchi technique, Comput. Fluids 37 (2008) 1344–1353 [Google Scholar]
  18. F. Selimefendigil, H.F. Oztop, Numerical study and pod-based prediction of natural convection in ferrofluids filled triangular cavity with generalized neural networks, Numer. Heat Transf. A: Appl. 67 (2015) 1136–1161 [CrossRef] [Google Scholar]
  19. P. Bissell, P. Bates, R. Chantrell, K. Raj, J. Wyman, Cavity magnetic field measurements in ferrofluids, J. Magn. Magn. Mater. 39 (1983) 27–29 [Google Scholar]
  20. C.J. Vales-Pinzon, J.J. Alvarado-Gil, R. Medina-Esquivel, P. Martinez-Torres, Polarized light transmission in ferrofluids loaded with carbon nanotubes in the presence of a uniform magnetic field, J. Magn. Magn. Mater. 369 (2014) 114–121 [Google Scholar]
  21. R. Ellahi, M.H. Tariq, M. Hassan, K. Vafai, On boundary layer nano-ferroliquid flow under the influence of low oscillating stretchable rotating disk. J. Mol. Liq. 229 (2019) 339–345 [Google Scholar]
  22. J.L. Neuringer, Some viscous flows of a saturated ferrofluid under the combined influence of thermal and magnetic field gradients, Int. J. Nonlinear Mech. 1 (1966) 123–137 [CrossRef] [Google Scholar]
  23. M. Sheikholeslami, M. Gorji-Bandpy, Free convection of ferrofluid in a cavity heated from below in the presence of an external magnetic field, Powder Technol. 256 (2014) 490–498 [Google Scholar]
  24. S.U. Rehman, A. Zeeshan, A. Majeed, M.B. Arain, Impact of Cattaneo-Christov heat flux model on the flow of Maxwell ferromagnetic liquid along a cold flat plate embedded with two equal magnetic dipoles, J. Magn. 22 (2017) 472–477 [CrossRef] [Google Scholar]
  25. M. Hassan, A. Zeeshan, A. Majeed, R. Ellahi, Particle shape effects on ferrofuids flow and heat transfer under influence of low oscillating magnetic field. J. Magn. Magn. Mater. 443 (2017) 36–44 [Google Scholar]
  26. W. Feng, C. Wu, F. Guo, D. Li, Acoustically controlled heat transfer of ferromagnetic fluid, Int. J. Heat Mass Transf. 44 (2001) 4427–4432 [Google Scholar]
  27. M.M. Rashidi, M. Nasiri, M. Khezerloo, N. Laraqi, Numerical investigation of magnetic field effect on mixed convection heat transfer of nanofluid in a channel with sinusoidal walls, J. Magn. Magn. Mater. 93 (2016) 674–6826 [Google Scholar]
  28. M. Sheikholeslami, M. Gorji-Bandpy, Free convection of ferrofluid in a cavity heated from below in the presence of an external magnetic field, Powder Technol. 256 (2014) 490–498 [Google Scholar]
  29. T. Franklin, C. Rinaldi, J.W. Bush, M. Zahn, Deformation of ferrofluid sheets due an applied magnetic field transverse to jet flow, J. Vis. 7 (2004) 175–175 [Google Scholar]
  30. C. Rinaldi, M. Zahn, Ferrohydrodynamic instabilities in dc magnetic fields, J. Vis. 7 (2004) 8–8 [Google Scholar]
  31. C. Lorenz, C. Rinaldi, M. Zahn, Hele-Shaw ferrohydrodynamics for simultaneous in-plane rotating and vertical DC magnetic fields, J. Vis. 7 (2004) 109–109 [Google Scholar]
  32. A. Zavos, P.G. Nikolakopoulos, Computational fluid dynamics analysis of top compression ring in mixed lubrication, Mech. Ind. 18 (2017) 208 [CrossRef] [Google Scholar]
  33. M. Muthtamilselvan, S. Sureshkumar, Impact of aspect ratio on a nanofluid-saturated porous enclosure, Mech. Ind. 18 (2017) 501 [CrossRef] [Google Scholar]
  34. R. Ellahi, M. Raza, N.S. Akbar, Study of peristaltic flow of nanofluid with entropy generation in a porous medium, J. Porous Media 20 (2017) 461–478 [Google Scholar]
  35. T. Strek, H. Jopek, Computer simulation of heat transfer through a ferrofluid, Phys. Status Solidi (b) 244 (2007) 1027–1037 [CrossRef] [Google Scholar]
  36. A. Majeed, A. Zeeshan, R.S.R. Gorla, Convective heat transfer in a dusty ferromagnetic fluid over a stretching surface with prescribed surface temperature/heat flux including heat source/sink, J. Natl. Sci. Found. Sri Lanka 46 (2018) 399–409. [Google Scholar]
  37. A. Zeeshan, A. Majeed, R. Ellahi, Q.M.Z. Zia, Mixed convection flow and heat transfer in ferromagnetic fluid over a stretching sheet with partial slip effects, Therm. Sci. 22 (2018) 2515–2526. [CrossRef] [Google Scholar]
  38. A. Majeed, A. Zeeshan, T. Hayat, Analysis of magnetic properties of nanoparticles due to applied magnetic dipole in aqueous medium with momentum slip condition, Neural Comp. Appl. 31 (2019) 189–197 [CrossRef] [Google Scholar]
  39. H.I. Andersson, O.A. Valnes, Flow of a heated Ferrofluid over a stretching sheet in the presence of a magnetic dipole, Acta Mech. 128 (1998) 39–47 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.