Open Access
Issue |
Mechanics & Industry
Volume 20, Number 5, 2019
|
|
---|---|---|
Article Number | 505 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/meca/2019027 | |
Published online | 16 July 2019 |
- K. Hutter, Y. Wang, Viscous fluids, in: Fluid and Thermodynamics: Advances in Geophysical and Environmental Mechanics and Mathematics, Springer, Cham, 2016, pp. 347–421 [Google Scholar]
- M. Jure, T. Primož, Laminar flow of a shear-thickening fluid in a 90° pipe bend, Fluid Dyn. Res. 38 (2006) 295–311 [Google Scholar]
- T. George, High-strain-rate deformation: mechanical behavior and deformation substructures induced, Annu. Rev. Mater. Res. 42 (2012) 285–303 [Google Scholar]
- H. Adrian, L. Martin, S. Jan, Finite element approximation of flow of fluids with shear-rate- and pressure-dependent viscosity, IMA J. Numer. Anal. 32 (2012) 1604–1634 [CrossRef] [Google Scholar]
- M. Jean, B. Vanden, Pouring flows with separation, Phys. Fluids 1 (1988) 156–171 [Google Scholar]
- J. Kestin, R.T. Wood, On the stability of two-dimensional stagnation flow, J. Fluid Mech. 44 (2006) 461–479 [Google Scholar]
- W.F. Robert, T.M. Alan, J.P. Philip, Introduction to fluid mechanics, 6th ed. John Wiley & Sons, Inc., New York, 2003 [Google Scholar]
- H.L. Grant, B.A. Hughes, W.M. Vogel, A. Moilliet, The spectrum of temperature fluctuations in turbulent, J. Fluid Mech. 34 (2006) 423–442 [Google Scholar]
- M. Fiebig, Vortices, generators and heat transfer, Chem. Eng. Res. Des. 76 (1998) 108–123 [Google Scholar]
- B. Trung, S. Fotis, C. Dane, K. Daniel, Vortex formation and instability in the left ventricle, Phys. Fluids 24 (2012) 091110 [CrossRef] [Google Scholar]
- G.B. Peter, M.B. Humio, On the mechanism of shear flow instabilities, J. Fluid Mech. 276 (1994) 327–342 [Google Scholar]
- Z. Shen, J. Niu, Y. Wang, H. Wang, X. Zhao, Hydrodynamic effects, in: Distribution and Transformation of Nutrients and Eutrophication in Large-Scale Lakes and Reservoirs, Advanced Topics in Science and Technology in China, Springer, Berlin, 2013 [CrossRef] [Google Scholar]
- Y.A. Cengel, A.J. Ghajar, Heat and mass transfer: fundamentals and applications, 4th ed. McGraw-Hill, New York, 2010 [Google Scholar]
- K. Konrad, Z. Tadeusz, An analysis of pressure distribution in water and water emulsion in a front gap of a hydrostatic bearing, Teka Comm. Motor. Energetics Agric. 14 (2014) 45–52 [Google Scholar]
- A.P. Koziol, Turbulent kinetic energy of water in a compound channel, Ann. Warsaw Univ. Life Sci. − SGGW Land Reclam. 43 (2011) 193–205 [Google Scholar]
- M. Takeshi, L. Joon-Soo, S. Manabu, K. Sang-Hyun, P. Ig-Chan, Measurements of the turbulent energy dissipation rate ɛ and an evaluation of the dispersion process of the Changjiang diluted water in the East China Sea, https://doi.org/10.1029/2005JC003196 [Google Scholar]
- J. Fe, L. Cueto-Felgueroso, F. Navarrina, J. Puertas, Numerical viscosity reduction in the resolution of the shallow water equations with turbulent term, Int. J. Numer. Methods Fluids 58 (2008) 781 [Google Scholar]
- J.Y. Vinçont, S. Simoens, M. Ayrault, M. Wallace, Passive scalar dispersion in a turbulent boundary layer from a line source at the wall and downstream of an obstacle, J. Fluid Mech. 424 (2000) 127–167 [Google Scholar]
- R. Rossi, G. Iaccarino, Numerical simulation of scalar dispersion downstream of a square obstacle using gradient-transport type models, J. Atmos. Environ. 43 (2009) 2518–2531 [CrossRef] [Google Scholar]
- M. Toumi, S. Haj Salah, W. Hassen, S. Marzouk, H. Ben Aissia, J. Jay, Three-dimensional study of parallel shear flow around an obstacle in water channel and air tunnel, Mechanics & Industry 18 (2017) 505–518 [CrossRef] [EDP Sciences] [Google Scholar]
- M.N. Anton, Y.D. Anton, G.R. Vyacheslav, A.R. Vladimir, A.V. Elena, Assessment of allowable thermal load for a river reservoir subject to multi-source thermal discharge from operating and designed Beloyarsk NPP units (South Ural, Russian Federation), Environ. Model. Assess. 5 (2017) 1588–1595 [Google Scholar]
- K. Kendricks, Interdisciplinary connections: applications of differential equations in water quality, biomechanics, and robotics, paper presented at the Annual Meeting of the Mathematical Association of America MathFest, Lexington Convention Center, Lexington, 2011, pp. 11–25 [Google Scholar]
- W. Stephen, Coupling turbulence in hybrid LES-RANS techniques, J. Fluid Mech. 187 (2011) 61 [Google Scholar]
- K. Igor, D.T. Lev, The space-time-averaging procedure and modeling of the RF discharge II. Model of collisional low-pressure RF discharge, IEEE Trans. Plasma Sci. 20 (1992) 66–75 [CrossRef] [Google Scholar]
- G.T. Velitchko, A.A. Alvaro, I.A. Felipe, Advection-dispersion-reaction modeling in water distribution networks, J. Water Resour. Planning Manage. 128 (2002) 334 [CrossRef] [Google Scholar]
- J.B. Maciej, H.D. Earl, R.N. Bernd, Low-dimensional modelling of high-Reynolds-number shear flows incorporating constraints from the Navier-Stokes equation, J. Fluid Mech. 729 (2013) 285–308 [Google Scholar]
- K.W. Chen, H.T. Davis, E.A. Davis, G. Joan, Heat and mass transfer in water-laden sandstone: convective heating, Aiche J. 31 (1985) 1338–1348 [Google Scholar]
- S.R. Martin, Measurements of the Reynolds stresses in a turbulent water flow and comparison with the [kappa-epsilon] computer model FLOW3D, AEA Technology 18, 1989 [Google Scholar]
- H. Versteeg, W. Malalasekera, An introduction to computational fluid dynamics: the finite volume method, Pearson Education, 2007, pp. 43–49 [Google Scholar]
- M. Paul, Stability, hyperbolicity and the Boussinesq approximation in layered shallow water, Atmosphere Ocean Science Colloquium, 2010 [Google Scholar]
- FLUENT 6.1 User's Guide, Fluent Inc., Lebanon, 2003 [Google Scholar]
- C. Fred, Aerodynamics for naval aviators workbook, Information Age Publishing Inc., Charlotte, NC, 1994 [Google Scholar]
- V.P. Singh, M. Fiorentino, Entropy and energy dissipation in water resources, Kluwer Academic Publishers, Dordrecht, 1992 [CrossRef] [Google Scholar]
- F. Hugob, Mass transport mechanisms in partially stratified estuaries, J. Fluid Mech. 53 (2006) 671–687 [Google Scholar]
- C. Senat, J.P. Guilhot, R. Gamba, Présentation d'un modèle de prévision des niveaux de pression dans les locaux encombrés, J. Phys. IV (1992) 471–484 [Google Scholar]
- J. Sjah, E. Vincens, F. Leboeuf, M. Chaze, Modélisation 2D de l'écoulement visqueux autour d'un cylindre fixe par la méthode SPH-ALE 31èmes Rencontres de l'AUGC, E.N.S. Cachan, 2013 [Google Scholar]
- Y. Eulalie, Étude aérodynamique et contrôle de la trainée sur un corps de ahmed culot droit, PhD thesis in Applied Mathematics and Scientific Calculation, University of Bourdeaux, France, 2014 [Google Scholar]
- J.D. Anderson, Fundamentals of aerodynamic, 3rd ed., McGraw-Hill, 2001 [Google Scholar]
- K. Kidena, Anisotropic diffusion of water in perfluorosulfonic acid membrane and hydrocarbon membranes, J. Membr. Sci. 323 (2008) 201–206. [CrossRef] [Google Scholar]
- G.G. Cristóbal, S.G. Bernardo, E.L. Pérez-Lezama, The influence of large-scale phenomena on La Paz Bay hydrographic variability, Open J. Mar. Sci. 5 (2015) 146–157 [CrossRef] [Google Scholar]
- V.G. Fábio, M.R. Helena, R.R. Luisa, Energy production in water supply systems based on renewable sources, in: Environmental Hydraulics: Theoretical, Experimental and Computational Solutions, CRC Press, Boca Raton, FL, 2009, pp. 277–280 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.