Open Access
Mechanics & Industry
Volume 20, Number 5, 2019
Article Number 501
Number of page(s) 13
Published online 15 July 2019
  1. C. Carcasci, F. Costanzi, B. Pacifici, Performance analysis in off-design condition of gas turbine air-bottoming combined system, Energy Procedia 45 (2014) 1037–1046 [Google Scholar]
  2. M. Nadir, A. Ghenaiet, C. Carcasci, Thermo-economic optimization of heat recovery steam generator for a range of gas turbine exhaust temperatures, Appl. Therm Eng. 106 (2016) 811–826 [Google Scholar]
  3. U.S. Department of Energy, Waste heat recovery: Technology and opportunities in U.S. Industry, 2008. [Google Scholar]
  4. [Access 2018] [Google Scholar]
  5. L. Athanasios, On the systematic design and selection of optimal working fluids for Organic Rankine Cycles, Appl. Therm Eng. 30 (2010) 760–769 [Google Scholar]
  6. [Access 2018] [Google Scholar]
  7. B. Schulitz, Working fluids for ORC Plants: Add-an circuits for waste heat utilization, VGB Kraftwerke Technik 66 (1986) 419–426 [Google Scholar]
  8. P.J. Mago, L.M. Chamra, C. Somayaji, Analysis and optimization of organic Rankin cycles, IMechE J. Power Energy 221 (2007) 255–263 [CrossRef] [Google Scholar]
  9. C. Invernizzi, P. Iora, P. Silva, Bottoming micro-Rankine cycles for micro-gas turbines, Appl. Therm. Eng. J. 27(1) (2007) 100–110 [Google Scholar]
  10. P. Ahmadi, I. Dincer, Marc A. Rosen, Exergoenvironmental analysis of a trigeneration system based on micro gas turbine and organic Rankine cycle, Proceedings of the global conference on global warming July 2011. [Google Scholar]
  11. B.F. Tchanche, G. Lambrinos, A. Frangoudakis, G. Papadakis, Low-grade heat conversion into power using organic Rankine cycles – A review of various applications, Renew. Sustain. Energy Rev. 15(18) (2011) 3963–3979. [Google Scholar]
  12. E. Wang, H. Zhang, B. Fan, Y. Wu, Optimized performances comparison of organic Rankine cycles for low grade waste heat recovery, J. Mech. Sci. Technol. 26(8) (2012) 2301–2312 [CrossRef] [Google Scholar]
  13. M. Bahrami, A.A. Hamidi, S. Porkhial, Investigation of the effect of organic working fluids on thermodynamic performance of combined cycle Stirling-ORC, Int. J. Energy Environ. Engin. 4 (2013) 12–25 [CrossRef] [Google Scholar]
  14. M. Tańczuk, R. Ulbrich, Implementation of a biomass-fired co-generation plant supplied with an ORC (Organic Rankine Cycle) as a heat source for small scale heat distribution system – A comparative analysis under Polish and German conditions, Energy J. 62 (2013) 132–141 [CrossRef] [Google Scholar]
  15. S. Clemente, D. Micheli, M. Reini, R. Taccani, Bottoming organic Rankine cycle for a small scale gas turbine: A comparison of different solutions, Appl. Energy J. 106 (2013) 355–364. [CrossRef] [Google Scholar]
  16. G. Cavazzini, P. Dal Toso, Techno-economic feasibility study of the integration of a commercial small-scale ORC in a real case study, Energy Convers. Manag. J. 99 (2015) 161–175 [CrossRef] [Google Scholar]
  17. C. Carcasci, L. Winchler, Thermodynamic analysis of an Organic Rankine Cycle for waste heat recovery from an aeroderivative intercooled gas turbine, Energy Proc. 101 (2016) 862–869 [CrossRef] [Google Scholar]
  18. Y. Cao, Y. Dai, Comparative analysis on off-design performance of a gas turbine and ORC combined cycle under different operation approaches, Energy Convers. Manag. 135 (2017) 84–100 [Google Scholar]
  19. M.A. Ehyaei, M.H. Saidi, A. Abbassi, Optimization of a combined heat and power PEFC by Exergy analysis, J. Power Sources 143 (2005) 179–184 [Google Scholar]
  20. M. H. Saidi, A. Abbassi, M.A. Ehyaei, Exergetic optimization of a PEM Fuel Cell for domestic hot water heater, ASME, J. Fuel Cell Technol. 2 (2005) 284–289 [Google Scholar]
  21. A. Ahmadi, M.A. Ehyaei, Optimization of wind turbine by exergy analysis, Int. J. Exergy, 6(4) (2009) 147–161 [CrossRef] [Google Scholar]
  22. A. Mozafari, A. Ahmadi, M.A. Ehyaei, Exergy, economic and environmental optimization of micro gas turbine, Int. J. Exergy 7(1) (2010) 289–310 [CrossRef] [Google Scholar]
  23. M.A. Ehyaei, A. Mozafari, Energy, economic and environmental (3E) analysis of a micro gas turbine employed for on-site combined heat and power production, Energy and Build. 2 (2010) 259–264 [Google Scholar]
  24. M.A. Ehyaei, S. Hakimzadeh, P. Ahmadi, Exergy, economic and environmental analysis of absorption chiller inlet air cooler used in gas turbine power plants, Int. J. Energy Res. 43 (2011) 131–141 [Google Scholar]
  25. G.R. Ashari, M.A. Ehyaei, A. Mozafari, F. Atabi, E. Hajidavalloo, S. Shalbaf, Exergy, economic and environmental analysis of a PEM fuel cell power system to meet electrical and thermal energy needs of residential buildings, ASME J. Fuel Cell Technol. 9 (2012) 211–222 [Google Scholar]
  26. B. Ahrar-yazdi, B. Ahrar-Yazdi, M.A. Ehyaei, A. Ahmadi, Optimization of micro combined heat and power gas turbine by genetic algorithm, J. Therm. Sci. 19(1) (2015) 207–218 [CrossRef] [Google Scholar]
  27. E. Asghari, M.A. Ehyaei, Exergy analysis and optimization of a wind turbine using genetic and searching algorithms, Int. J. Exergy 15(3) (2015) 293–314 [CrossRef] [Google Scholar]
  28. M.A. Ehyaei, P. Ahmadi, M. Esfandiar, Optimization of Fog Inlet Air Cooling System for Combined Cycle Power Plants using Genetic, Appl. Therm. Eng. J. 76 (2015) 449–461 [CrossRef] [Google Scholar]
  29. M.A. Ehyaei, F. Atabi, M. Khorshidvand, M.A. Rosen, Exergy and environmental analysis for simple and combined heat and power IC engine, Sustainability 7(14) (2015) 4411–4424 [Google Scholar]
  30. M. Majdiyazdi, M. Aliehyaei, M.A. Rosen, Exergy, economic and environmental analyses of gas turbine inlet air cooling with a heat pump using a novel system configuration, Sustainability 7 (2015) 14259–14286 [Google Scholar]
  31. K. Darvish, M.A. Ehyaei, F. Atabi, M.A. Rosen, Selection of optimum working fluid for organic rankine cycles by exergy and exergy-economic analyses, Sustainability 7 (2015) 15362–15383 [Google Scholar]
  32. M. Shamoushaki, F. Ghanatir, M.A. Ehyaei, A. Ahmadi, Exergy and exergoeconomic analysis and multi-objective optimisation of gas turbine power plant by evolutionary algorithms, Case study: Aliabad Katoul power plant, Int. T. Exergy 22(3) (2017), 279–306 [CrossRef] [Google Scholar]
  33. M. Shamoushaki, M.A. Ehyaei, Exergy, economic and environmental (3E) analysis of a gas turbine power plant and optimization by MOPSO algorithm, Thermal Science (2017), [Google Scholar]
  34. M.A. Ehyaei, B. Farshin, Optimization of photovoltaic thermal (PV/T) hybrid collectors by genetic algorithm in Iran's residential areas, Advanc. Energy Rese. 5(1) (2017) 31–55 [CrossRef] [Google Scholar]
  35. M. Shamoushaki, M.A. Ehyaei, F. Ghanatir, Exergy, economic and environmental analysis and multi-objective optimization of a SOFC-, GT power plant, Energy J. 134 (2017) 515–531 [CrossRef] [Google Scholar]
  36. E. Ghasemian, M.A. Ehyaei, Evaluation and optimization of organic Rankine cycle (ORC) with algorithms NSGA-II, MOPSO, and MOEA for eight coolant fluids, Int. J. Energy Environ. Eng. (2017), Doi: 10.1007/s40095-017-0251–7. [Google Scholar]
  37. H. Kazemi, M.A. Ehyaei, Energy, exergy, and economic analysis of a geothermal power plant. AdvancGeo-Energy Res. 2(2) (2018), Doi: 10.26804/ager.2018.02.07. [Google Scholar]
  38. H. Cohen, G.F.C. Rogers, Gas turbine theory, Longman Group Limited, London, 1996. [Google Scholar]
  39. R. Kehlhofer, Combined-cycle gas and steam turbine power plant, Tulsa, PennWell, USA 1997. [Google Scholar]
  40. [Access 2018] [Google Scholar]
  41. Y. Cengel, M.A. Boles, Thermodynamics: An engineering approach, McGraw-Hill Publication, Fourth Edition, 2001. [Google Scholar]
  42. M.A. Ehyaei, A. Mozafari, M.H. Alibiglou, Exergy, economic & environmental (3E) analysis of inlet fogging for gas turbine power plant, Energy 36 (2011) 6851–6861 [Google Scholar]
  43. M.R. von Spakovsky, C.A. Frangopoulos, The environomic analysis and optimization of a gas turbine cycle with cogeneration, Thermodynamics and the Design, Anal. Improv. Energy Syst. 33(1) (1994) 15–26 [Google Scholar]
  44. J.L. Silveira, C.E. Tuna, Thermoeconomic analysis method for optimization of combined heat and power systems. Part I, Prog. Energy Combust. Sci. 29 (2003) 479–485 [CrossRef] [Google Scholar]
  45. D. Scardigno, E. Fanelli, A. Viggiano, G. Braccio, V. Magi, V. A. Genetic optimization of a hybrid organic Rankine plant for solar and low-grade energy sources, Energy 91 (2000) 807–815 [CrossRef] [Google Scholar]
  46. Y. Cao, Y. Gao, Y. Zheng, Y. Dai, Optimum design and thermodynamic analysis of a gas turbine and ORC combined cycle with recuperators, Energy Convers. Manag. 116 (2016) 32–41 [Google Scholar]
  47. S. Lecompte, H. Huisseune, M. van den Broek, S. De Schampheleire, M. De Paepe. Part load based thermo-economic optimization of the Organic Rankine Cycle (ORC) applied to a combined heat and power (CHP) system, Appl. Energy 111 (2013) 871–881 [Google Scholar]
  48. [Access 2018] [Google Scholar]
  49. J.H. Horlock, Combined Power Plants, MacGrawhill Publication LTD, 1982 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.