Open Access
Mechanics & Industry
Volume 20, Number 6, 2019
Article Number 619
Number of page(s) 8
Published online 02 December 2019
  1. NUREG/CR-6909, Rev. 0, Effect of LWR Coolant Environments on the Fatigue Life of Reactor Materials, 2007, O.K. Chopra and W.J. Shack [Google Scholar]
  2. RCC-M − Design and Construction Rules for mechanical components of nuclear PWR islands − 2007 edition with addenda in 2008, 2009 and 2010 [Google Scholar]
  3. EN-13445-3 V1 standard, Unfired pressure vessels − Part 3: Design, December 2014 [Google Scholar]
  4. RCC-MRx, Règles de Conception et de Construction des Matériels Mécaniques des Installations Nucléaires applicables aux structures à haute température et à l'enceinte à vide ITER, AFCEN Code, Association Française pour les Règles de Conception et de Construction des chaudières Électronucléaires., 2012 [Google Scholar]
  5. A. Fissolo et al., Crack Initiation under thermal fatigue: an overview of CEA experience, Part 1: thermal fatigue appears to be more damaging than uniaxial isothermal fatigue, Int. J. Fatigue 31, 587–600 (2009) [Google Scholar]
  6. L. De Baglion, Comportement et endommagement en fatigue oligocyclique d'un acier inoxydable austénitique 304L en fonction de l'environnement (vide, air, eau primaire REP) à 300 °C, Thèse de l'Ecole Nationale Supérieure de Mécanique et d'Aérotechnique, 2006 [Google Scholar]
  7. D.F. Lefebvre, Hydrostatic Pressure effect on Life Prediction in Biaxial Low-cycle fatigue, in: Biaxial and Multiaxial Fatigue: EGF 3, John Wiley & Sons, Chichester, 1989 [Google Scholar]
  8. T. Itoh et al., A design procedure for assessing low cycle fatigue life under proportional and non-proportional loading, Int. J. Fatigue 28, 459–466 (2006) [Google Scholar]
  9. M.W. Parsons, K.J. Et Pascoe, Development of a biaxial fatigue testing rig, J Strain Anal. 10, 1–3 (1975) [CrossRef] [Google Scholar]
  10. H. Shimada, K. Shimizu, M. Obata, K. Chikugo, M. Chiba, A new biaxiaI testing machine for the flat specimen and a fundamental study on the shape of the specimen, Technol. Rep., Tohoku University 42, 1976, 351–369 [Google Scholar]
  11. M. Poncelet et al., Biaxial high cycle fatigue of a type 304L stainless steel: cyclic strains and crack initiation detection by digital image correlation, Eur. J. Mech. A/Solids 29, 810–825 (2010) [CrossRef] [Google Scholar]
  12. S. Bradai et al., Crack initiation under equibiaxial fatigue, development of a particular equibiaxial fatigue device, PVP2013-97200, 2013 [Google Scholar]
  13. S. Bradaï, C. Gourdin, C. Gardin, Study of crack propagation under fatigue equibiaxial loading, PVP2014-28417, ASME PVP 2014 [Google Scholar]
  14. S. Bradaï, C. Gourdin et al., Equi-biaxial loading effect on austenitic stainless steel fatigue life, PVP2015-45293, ASME PVP 2015 [Google Scholar]
  15. K.D. Ives, L.F. Kooistra, J.T. Tucker, Equibiaxial low-cycle fatigue properties of typical pressure-vessel steels, J. Basic Eng. Trans. ASME Ser. D 88, 745–754 (1966) [CrossRef] [Google Scholar]
  16. J. Shewchuk, S.Y. Zamrik, J. Marin, Low-cycle fatigue of 7075-T651 aluminum alloy in biaxial bending, Exp. Mech. 8, 504–512 (1968) [Google Scholar]
  17. M. Kamaya, Development of disc bending fatigue test technique for equi-biaxial loading, Int. J. Fatigue 82, 561–571 (2016) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.