Open Access
Issue |
Mechanics & Industry
Volume 20, Number 6, 2019
|
|
---|---|---|
Article Number | 630 | |
Number of page(s) | 19 | |
DOI | https://doi.org/10.1051/meca/2019058 | |
Published online | 05 December 2019 |
- I. Gibson, D. Rosen, B. Stucker, Additive manufacturing technologies, 2015. [CrossRef] [Google Scholar]
- W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C.B. Williams, C.C. Wang, Y.C. Shin, S. Zhang, P.D. Zavattieri, The status, challenges, and future of additive manufacturing in engineering, Comp. Aided Des. 69, 65–89 (2015) [CrossRef] [Google Scholar]
- G. Jense, Voxel-based methods for CAD, Comp. Aided Des. 21, 528–533 (1989) [CrossRef] [Google Scholar]
- A.E. Kaufman, Volume visualization, ACM Comput. Surv. 28, 165–167 (1996) [Google Scholar]
- D.P.A. Booth, A. Sutton, Systematic approaches to a successful literature review, 2011 [Google Scholar]
- B. Kitchenham, O.P. Brereton, D. Budgen, M. Turner, J. Bailey, S. Linkman, Systematic literature reviews in software engineering – a systematic literature review, Inf. Softw. Technol. 51, 7–15 (2009) [Google Scholar]
- P. Brereton, B.A. Kitchenham, D. Budgen, M. Turner, M. Khalil, Lessons from applying the systematic literature review process within the software engineering domain, J. Syst. Softw. 80, 571–583 (2007) [Google Scholar]
- A.C.C. dos Santos, M.E. Delamaro, F.L. Nunes, The relationship between requirements engineering and virtual reality systems: a systematic literature review, in 2013 XV Symposium on Virtual and Augmented Reality, IEEE, 2013 [Google Scholar]
- J. Wu, N. Aage, R. Westermann, O. Sigmund, Infill optimization for additive manufacturing—approaching bone-like porous structures, IEEE Trans. Visual. Comput. Graph. 24, 1127–1140 (2018) [CrossRef] [Google Scholar]
- A. Krishnakumar, K. Suresh, A. Chandrasekar, Towards assembly-free methods for additive manufacturing simulation, in 35th Computers and Information in Engineering Conference, ASME, Volume 1A, 2015 [Google Scholar]
- S.E. Ghiasian, P. Jaiswal, R. Rai, K. Lewis, From conventional to additive manufacturing: Determining component fabrication feasibility, Vol. 2A-2018, Quebec City, QC, Canada, 2018 [Google Scholar]
- N. Boddeti, Z. Ding, S. Kaijima, K. Maute, M.L. Dunn, Simultaneous digital design and additive manufacture of structures and materials, Sci. Rep. 8, 15560 (2018) [CrossRef] [PubMed] [Google Scholar]
- U.S. Venkatesan, S. Pande, Efficient process planning strategies for additive manufacturing, Vol. 2, Los Angeles, CA, United states, 2017 [Google Scholar]
- S. Park, D.W. Rosen, Quantifying effects of material extrusion additive manufacturing process on mechanical properties of lattice structures using as-fabricated voxel modeling, Addit. Manufactur. 12, 265–273 (2016) [CrossRef] [Google Scholar]
- S.-I. Park, D.W. Rosen, Homogenization of mechanical properties for material extrusion periodic lattice structures considering joint stiffening effects, J. Mech. Des. 140, 111414 (2018) [CrossRef] [Google Scholar]
- A. Gleadall, I. Ashcroft, J. Segal, VOLCO: a predictive model for 3d printed microarchitecture, Addit. Manufact. 21, 605–618 (2018) [CrossRef] [Google Scholar]
- A. Aremu, J. Brennan-Craddock, A. Panesar, I. Ashcroft, R. Hague, R. Wildman, C. Tuck, A voxel-based method of constructing and skinning conformal and functionally graded lattice structures suitable for additive manufacturing, Addit. Manufact. 13, 1–13 (2017) [CrossRef] [Google Scholar]
- G.A. da Silva, A.T. Beck, O. Sigmund, Stress-constrained topology optimization considering uniform manufacturing uncertainties, Comput. Methods Appl. Mech. Eng. 344, 512–537 (2019) [Google Scholar]
- G. Retsin, M.J. Garcia, Discrete computational methods for robotic additive manufacturing, ACADIA, 2016 [Google Scholar]
- S. Dinda, D. Modi, T.W. Simpson, S. Tedia, C.B. Williams, Expediting build time, material, and cost estimation for material extrusion processes to enable mobile applications, in Volume 2A: 43rd Design Automation Conference, ASME, 2017. [Google Scholar]
- A. Verma, R. Rai, Computational geometric solutions for efficient additive manufacturing process planning, Vol. 1A, Buffalo, NY, United states, 2014 [Google Scholar]
- Y.-S. Leung, H. Mao, Y. Chen, Approximate functionally graded materials for multi-material additive manufacturing, Vol. 1A-2018, Quebec City, QC, Canada, 2018 [Google Scholar]
- G. Sossou, F. Demoly, G. Montavon, S. Gomes, Design for 4d printing: rapidly exploring the design space around smart materials, Proc. CIRP 70, 120–125 (2018) [CrossRef] [Google Scholar]
- G. Moroni, S. Petrò, W. Polini, Geometrical product specification and verification in additive manufacturing, CIRP Ann. 66, 157–160 (2017) [CrossRef] [Google Scholar]
- M.K. Thompson, M. Mischkot, Design of test parts to characterize micro additive manufacturing processes, Proc. CIRP 34, 223–228 (2015) [CrossRef] [Google Scholar]
- E. Doubrovski, E. Tsai, D. Dikovsky, J. Geraedts, H. Herr, N. Oxman, Voxel-based fabrication through material property mapping: a design method for bitmap printing, Comp. Aided Des. 60, 3–13 (2015) [CrossRef] [Google Scholar]
- F. Craveiro, H. Bartolo, A. Gale, J. Duarte, P. Bartolo, A design tool for resource-efficient fabrication of 3d-graded structural building components using additive manufacturing, Autom. Constr. 82, 75–83 (2017) [CrossRef] [Google Scholar]
- S.-K. Ueng, L.-G. Chen, S.-Y. Jen, Voxel-based virtual manufacturing simulation for three-dimensional printing, Adv. Mech. Eng. 10, 168781401878163 (2018) [CrossRef] [Google Scholar]
- A. Ripetskiy, S. Zelenov, E. Kuznetsova, L. Rabinskiy, Evaluation of the thermal processes and simulation methods for additive manufacturing based on the geometry voxel representation, Key Eng. Mater. 771, 91–96 (2018) [Google Scholar]
- J. Martínez, J. Dumas, S. Lefebvre, Procedural voronoi foams for additive manufacturing, ACM Trans. Graph. 35, 1–12 (2016) [Google Scholar]
- E. Shchurova, A. Shchurova, A new file format to describe fiber-reinforced composite workpiece structure for additive technology machines, Proc. Eng. 129, 105–110 (2015) [CrossRef] [Google Scholar]
- A. Ahsan, R. Xie, B. Khoda, Heterogeneous topology design and voxel-based bio-printing, Rapid Prototyp. J. 24, 1142–1154 (2018) [Google Scholar]
- O. Formoso, G. Trinh, S. Hu, K. Cheung, Development and robustness characterization of a digital material assembly system, Proc. Manufact. 26, 1003–1013 (2018) [CrossRef] [Google Scholar]
- R. Palmarini, J.A. Erkoyuncu, R. Roy, H. Torabmostaedi, A systematic review of augmented reality applications in maintenance, Robot. Comput. Integr. Manufact. 49, 215–228 (2018) [CrossRef] [Google Scholar]
- M.P. Bendsoe, O. Sigmund, Topology optimization - Theory, methods and applications, 2004. [Google Scholar]
- ASTMstandard f2792, standard terminology for additive manufacturing technologies, Tech. rep., ASTM International, 2013 [Google Scholar]
- D. Pham, R. Gault, A comparison of rapid prototyping technologies, Int. J. Mach. Tools Manuf. 38, 1257–1287 (1998) [CrossRef] [Google Scholar]
- M.K. Agarwala, V.R. Jamalabad, N.A. Langrana, A. Safari, P.J. Whalen, S.C. Danforth, Structural quality of parts processed by fused deposition, Rapid Prototyp. J. 2, 4–19 (1996) [Google Scholar]
- P.M. Pandey, N.V. Reddy, S.G. Dhande, Slicing procedures in layered manufacturing: a review, Rapid Prototyp. J. 9, 274–288 (2003) [Google Scholar]
- H. Le, Progress and trends in ink-jet printing technology, J. Imag. Sci. Technol. 42, 49–62 (1998) [Google Scholar]
- B.-J. de Gans, P.-C. Duineveld, U.-S. Schubert, Inkjet printing of polymers: State of the art and future developments, Adv. Mater. 16, 203–213 (2004) [Google Scholar]
- J.J. Beaman, C.R. Deckard, Selective laser sintering with assisted powder handling [Google Scholar]
- E. Olakanmi, R. Cochrane, K. Dalgarno, A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties, Progr. Mater. Sci. 74, 401–477 (2015) [Google Scholar]
- M.L. Griffith, L.D. Harwell, T. Romero, E. Schlienger, C.L. Atwood, J.E. Smugeresky, Multi-material processing by lens, in: University of Texas at 1997, pp. 387–393 [Google Scholar]
- K. Cooper, Rapid Prototyping Technology, CRC Press, 2001 [Google Scholar]
- G. Trinh, G. Copplestone, M. O’Connor, S. Hu, S. Nowak, K. Cheung, B. Jenett, D. Cellucci, Robotically assembled aerospace structures: digital material assembly using a gantry-type assembler,in 2017 IEEE Aerospace Conference, IEEE, 2017 [Google Scholar]
- B. Khoshnevis, D. Hwang, K.T. Yao, Z. Yeh, Mega-scale fabrication by contour crafting, Int. J. Ind. Syst. Eng. 1, 301 (2006) [Google Scholar]
- T.D. Ngo, A. Kashani, G. Imbalzano, K.T. Nguyen, D. Hui, Additive manufacturing (3d printing): a review of materials, methods, applications and challenges, Compos. Part B 143, 172–196 (2018) [Google Scholar]
- S. Singh, S. Ramakrishna, R. Singh, Material issues in additive manufacturing: a review, J. Manufact. Process. 25, 185–200 (2017) [Google Scholar]
- O. Sigmund, A 99 line topology optimization code written in matlab, Struct. Multidiscipl. Optim. 21, 120–127 (2001) [Google Scholar]
- D.S. Nguyen, F. Vignat, A method to generate lattice structure for additive manufacturing, in: 2016 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), IEEE, 2016 [Google Scholar]
- A. Vigliotti, D. Pasini, Stiffness and strength of tridimensional periodic lattices, Comp. Methods Appl. Mech. Eng. 229–232, 27–43 2012 [CrossRef] [Google Scholar]
- K. Sai Nithin Reddy, V. Maranan, T.W. Simpson, T. Palmer, C.J. Dickman, Application of topology optimization and design for additive manufacturing guidelines on an automotive component, in: Volume 2A: 42nd Design Automation Conference, ASME, 2016 [Google Scholar]
- M. Zhou, G. Rozvany, The COC algorithm, part II: topological, geometrical and generalized shape optimization, Comp. Methods Appl. Mech. Eng. 89, 309–336 (1991) [CrossRef] [Google Scholar]
- N.P. Suh, The principles of design, Oxford University Press Inc, 1990 [Google Scholar]
- M. McMillan, M. Jurg, M. Leary, M. Brandt, Programmatic lattice generation for additive manufacture, Proc. Technol. 20, 178–184 (2015) [CrossRef] [Google Scholar]
- S. Arabnejad, D. Pasini, Mechanical properties of lattice materials via asymptotic homogenization and comparison with alternative homogenization methods, Int. J. Mech. Sci. 77, 249–262 (2013) [CrossRef] [Google Scholar]
- MathWorks, Matlab, www.mathworks.com/products/matlab.html [Google Scholar]
- K. Group, Opencl, www.khronos.org/opencl [Google Scholar]
- D. Cohen-Or, A. Kaufman, Fundamentals of surface voxelization, Graph. Models Image Process. 57, 453–461 (1995) [CrossRef] [Google Scholar]
- E.-A. Karabassi, G. Papaioannou, T. Theoharis, A fast depth-buffer-based voxelization algorithm, J. Graph. Tools 4, 5–10 (1999) [CrossRef] [Google Scholar]
- A. Ceruti, R. Ferrari, A. Liverani, Design for additive manufacturing using LSWM: a cad tool for the modelling of lightweight and lattice structures, in G. Campana, R.J. Howlett, R. Setchi, B. Cimatti (Eds.), Sustainable Design and Manufacturing 2017, Springer International Publishing, Cham, 2017, pp. 756–765. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.