Issue
Mechanics & Industry
Volume 20, Number 8, 2019
Selected scientific topics in recent applied engineering – 20 Years of the ‘French Association of Mechanics – AFM’
Article Number 804
Number of page(s) 16
DOI https://doi.org/10.1051/meca/2020009
Published online 25 February 2020
  1. F. Chinesta, A. Huerta, G. Rozza, K. Willcox, Model Order Reduction. Chapter in the Encyclopedia of Computational Mechanics, Second Edition, Erwin Stein, René de Borst & Tom Hughes Edt., John Wiley & Sons Ltd. (2015) [Google Scholar]
  2. F. Chinesta, P. Ladeveze, E. Cueto, A short review in model order reduction based on proper generalized decomposition. Arch. Comput. Methods Eng. 18, 395–404 (2011) [Google Scholar]
  3. F. Chinesta, A. Leygue, F. Bordeu, J.V. Aguado, E. Cueto, D. Gonzalez, I. Alfaro, A. Ammar, A. Huerta, PGD-based computational vademecum for efficient design, optimization and control, Arch. Comput. Methods Eng. 20, 31–59 (2013) [Google Scholar]
  4. F. Chinesta, R. Keunings, A. Leygue, The Proper Generalized Decomposition for Advanced Numerical Simulations. A primer. Springerbriefs, Springer (2014) [CrossRef] [Google Scholar]
  5. D. Borzacchiello, J.V. Aguado, F. Chinesta, Non-intrusive sparse subspace learning for parametrized problems. Arch. Comput. Methods Eng. 26, 303–326 (2019) [Google Scholar]
  6. R. Ibanez, E. Abisset-Chavanne, A. Ammar, D. Gonzalez, E. Cueto, A. Huerta, J.L. Duval, F. Chinesta, A multi-dimensional data-driven sparse identification technique: the sparse proper generalized decomposition, Complexity 2018, 5608286 (2018) [Google Scholar]
  7. Safety Wissen, February 2019, European News Car Assessment Programme (EuroNCAP), available at https://www.safetywissen.com/#/requirement/ [Google Scholar]
  8. P.J. Schmid, Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech. 656, 5–28 (2010) [Google Scholar]
  9. S.L. Brunton, J.L. Proctor, N. Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, PNAS, April 12, 113, 3932–3937 (2016) [Google Scholar]
  10. C. Argerich, R. Ibanez, F. Chinesta, Code2vect: An efficient heterogenous data classifier and nonlinear regression technique. CRAS Mécanique. 347, 754–761 (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.